

Familial Neurohypophyseal Diabetes Insipidus in 13 kindreds and 2 Novel Mutations in the Vasopressin Gene

G Patti1, S Scianguetta2, A Balsamo3, M Cappa4, R Gaudino5, F Napoli1, L lughetti6, M Salerno7, S Perrotta2, M Maghnie1, N Di Iorgi1

1.Department of Pediatrics, IRCCS Giannina Gaslini, University of Genova 2. University of Bologna 4. Bambin Gesù Children Hospital 5. University of Verona 6. University of Naples

BACKGROUND and AIM

Autosomal dominant neurohypophyseal diabetes insipidus (adNDI) is caused by arginine vasopressin (AVP) deficiency resulting from mutations in the AVP-NPII gene encoding the AVP preprohormone. Aim: To describe the clinical and molecular features of Italian unrelated families with central Diabetes Insipidus (CDI).

SUBJECTS and METHODS

We analyzed AVP-NPII gene in 13 families in whom CDI appeared to be segregating (Figure 1).

• No clear genotype-phenotype correlation has been observed, except for the c.55 G>A (p.Ala19Thr) mutation, which led to a later onset of disease (median age 120 months).

Figure 3. Sequencing chromatograms obtained by automated dyeterminator sequencing of the AVP-NPII gene in the affected subjects

Patients with genetic diagnosis are indicated by the arrows

RESULTS

- n=22 patients were found to carry a pathogenic AVP-NPII gene mutation (Table 1);
- n=2 novel c.173 G>C (p.Cys58Ser), c.215 C>A (p.Ala72Glu) missense mutations and additional n=8 different mutations previously described were identified; n=9 were missense and n=1 non sense mutation;
- median age at CDI onset was 32.5 months with a variability within the same mutation (3 to 360 months).

- Brain magnetic resonance imaging (MRI) revealed absence of posterior pituitary hyperintensity in 8 out of 15 subjects, hypointense signal in 4 and normal signal in 2 (Table 2).
- Follow-up MRI showed the disappearance of the posterior pituitary hyperintensity after 6 years in one case (Fig.4).

Table 2. MRI findings in the subjects with AVP-NPII gene mutations

Families	Members	Anterior Pituitary	Pituitary Stalk	Posterior Pituitary
				Signal
1A	Index-case III1	Normal	Normal	Undetectable
2B	Index-case II1	Normal	Normal	Undetectable
3C	Index-case IV1	Hypoplasia	Normal	Undetectable
	Mother- III2	Normal	Normal	Undetectable
4D	Index-case III3	Normal	Normal	Normal
	Sister III4	Normal	Normal	Hypointense
5E	Index-case IV1	Hypoplasia	Normal	Normal
	Index-case MRI follow-up	Hypoplasia	Normal	Undetectable
6F	Index-case IV2	Normal	Normal	Hypointense
	Brother IV1	Normal	Normal	Undetectable
	Mother III2	Empty sella	Normal	Hypointense
7G	Index-case	Normal	Normal	Hypointense
8H	Index-case II1	Normal	Normal	Undetectable
11K	Index-case	Normal	Normal	Not available
12 L	Index-case	Normal	Normal	Hypointense
13M	Index-case	Normal	Normal	Undetectable

Table 1. Available Age of onset in index-cases and family members of our families and AVP mutations detected in 22 subjects

Families	Age of onset	Mutation/Exon
	(months)	
Family A: index-case	32	c.164C>T – (p.Pro55Leu)
Family A: father	nd	c.164C>T – (p.Pro55Leu)
		Exon II
Family B: index-case	30	c.322G>T – (p.Glu108X)
Family B : father	72	ExonII
Family C: index-case	16	c.287 G>A – (p.Gly96Asp)
Family C: index-case	12	c.287 G>A – (p.Gly96Asp)
Family C: mother	24	c.287 G>A – (p.Gly96Asp)
Family C: grandmother	360	c.287 G>A – (p.Gly96Asp)
		ExonII
Family D: index-case	33	c.164C>T – (p.Pro55Leu)
Family D: sister	22	ExonII
Family E: index-case	24	c.56C>T (p.Ala19Val)
Family E: father	18	c.56C>T (p.Ala19Val)
		Exon I
Family F: index-case	36	c.287G>T – (p.Gly96Val)
Family F: brother	36	ExonII
Family F: mother	72	
Family G; index-case	NA (first years of life)	c.262G>C – (p.Gly88Arg)
• · ·	· · · ·	ExonII
Family H: index-case	17	c.160G>C – (p.Gly54Arg)
Family H: index-case	19	c.160G>C – (p.Gly54Arg)
Family H : mother	NA (childhood)	c.160G>C – (p.Gly54Arg)
		ExonII
Family I -index-case	120	c.55G>A - (p.Ala19Thr)
Family I- index-case	120	Exon I
Family J- index-case	120	c.55G>A – (p.Ala19Thr)
		Exon I
Family K- index-case	132	c.55G>A-(p.Ala19Thr)
		Exon I
Family L- index-case	132	c.173 G>C – (p.Cys58Ser)
Family L- brother	120	c.173 G>C – (p.Cys58Ser)
		ExonII
Family M- index-case	3	c.215 C>A – (p. Ala72Glu)
Family M-father	6	c.215 C>A – (p. Ala72Glu)
		Exon II

Figure 4. Sagittal T1-weighted MRI in patient E.

A. Normal anterior pituitary and pituitary stalk size, and normal posterior pituitary hyperintensity (PPI) (white arrow) at the time of first MRI. **B.** Pubertal pituitary hypertrophy, normal pituitary stalk size and decreased signal intensity of the PPI at the age of 13 years (6 years after the first MRI).

Figure 2. Schematic diagram of the coding regions of the AVP-NPII gene The location and type of mutations associated with familial central diabetes insipidus identified in our cohort are represented and indicated by the arrows.

Pituitary, neuroendocrinology and puberty

GIUSEPPA PATTI

P1-097

CONCLUSIONS

adNDI is a progressive disease with a variable age of onset. Molecular analysis of AVP-NPII gene and counseling should be provided in selected cases to avoid unnecessary investigations and to ensure an early and adequate treatment.

References

- Babey M et al, Nat Rev Endocrinol 2011
- Di lorgi et al, Best Pract Res Clin Endocrinol Metab 2015
- Maghnie M et al, N Engl J Med 2000
- Rutishauser et al, Best Pract Res Clin Endocrinol Metab 2016

