

Cardiopulmonary exercise testing, body composition and metabolic status after allogeneic hematopoetic stem cell transplantation in childhood

<u>Kathleen De Waele¹, Lloyd Tack¹, Ilse Coomans², Catharina Dhooge³, Victoria Bordon³, Kaatje Toye¹, Martine Cools¹, Kristof Vandekerckhove²</u>

¹Pediatric endocrinology, Ghent University Hospital, Ghent, Belgium; ²Pediatric cardiology, Ghent University Hospital, Ghent, Belgium; ³Pediatric hematology & oncology, Ghent University Hospital, Ghent, Belgium

KEY MESSAGES

- An unfavorable metabolic profile after alloHSCT is associated with low physical fitness
- Emphasis on a healthy, active lifestyle remains important long after alloHSCT

RESULTS				
Characteristics	Patients		Controls	
	Males	Females	Males	Females
Age at evaluation (y)	19 ± 3	20 ± 3	20 ± 3	20 ± 3
Interval (y)	9.3 ± 5.06	12.5 ± 3.56	NA	NA

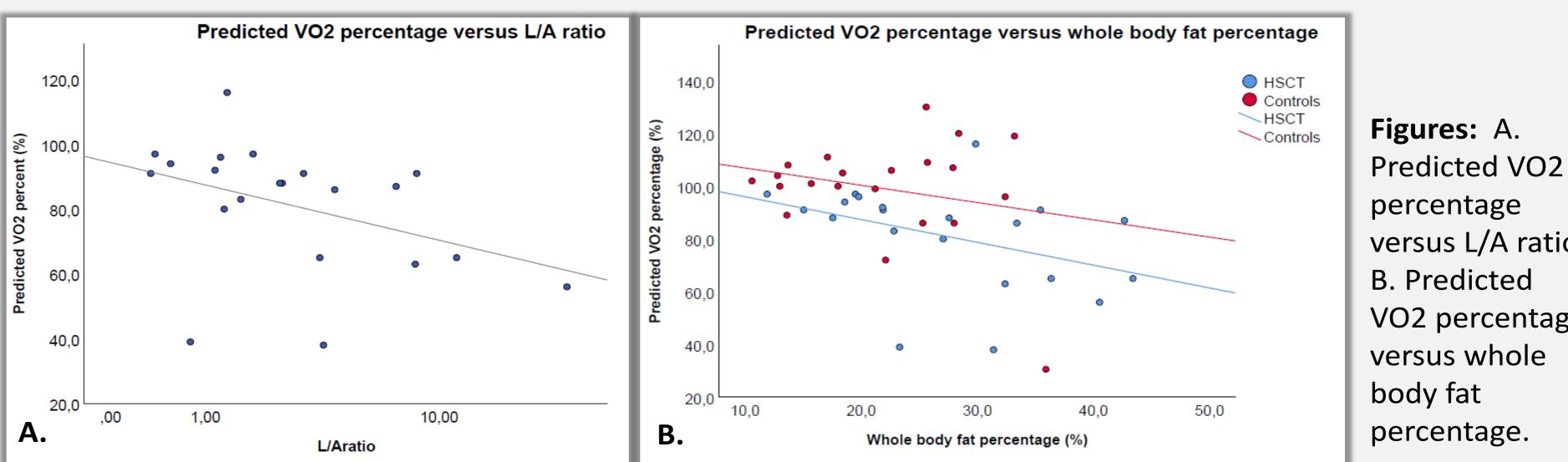
INTRODUCTION

Well-known long-term complications of alloHSCT in childhood include endocrine system damage secondary malignancies. In addition, and survivors of childhood alloHSCT are at risk of cardiovascular (CV) and metabolic disturbances.

OBJECTIVES

Cross-sectional investigation of exercise performance by cardiopulmonary exercise testing (CPET) and metabolic parameters in boys and underwent alloHSCT who for girls, а in childhood, hematological malignancy in comparison to healthy peers.

METHODS


Cardiopulmonary exercise testing: Maximal oxygen consumption (VO2peak), maximal load (PPeak), exercise duration (time), VE/VCO2 slope, oxygen uptake efficiency slope (OUES) ventilatory anaerobic threshold (VAT) **DXA:** Whole body fat and lean mass **Hormones:** leptin/adiponectin ratio (L/A ratio), homeostatic model assessment for insulin resistance (HOMA-IR)

Height (cm)	170.2 ± 6.72	164.9 ± 4.67	171.9 ± 5.05	165.8 ± 5.3
BMI (kg/m²)	20.0 ± 2.37	22.3 ± 3.72	21.3 ± 2.71	22.3 ± 3.10
BSA (m²)	1.61 ± 0.14	1.64 ± 0.15	1.68 ± 0.13	1.66 ± 0.13

BSA: body surface area; BMI: body mass index

Metabolic parameters	HSCT	Controls	p-value
L/A ratio	4.24 ± 5.91	1.55 ± 1.22	p=0.043
HOMA-IR	2.63 ± 1.69	1.78 ± 046	p=0.037
Whole body fat mass(kg)	16.36 ± 7.29	14.21 ± 5.50	p<0.006
Whole body total mass(kg)	59.60 ± 9.17	63.03 ± 9.41	NS
Whole body lean mass (kg)	41.27 ± 9.43	46.66 ± 6.43	p=0.016

L/A ratio and whole body fat percentage were negatively correlated with predicted VO2 percentage No correlation was seen with HOMA-IR

versus L/A ratio. VO2 percentage

Participants

Inclusion criteria:

- Boys and girls of 15 to 25 years
- AlloHSCT: ≥2-year interval since alloHSCT

Cases:

- AlloHSCT: n=21 (10 males, 11 females)
- Controls: n=21 (11 males, 10 females)

Diagnosis and treatment:

Age at alloHSCT: 9.2±4,91 years.

Exercise test results	HSCT	Controls	p-value
Heartrate rest (bpm)	98.6 ± 13.9	89.6 ± 13.9	0.045
VO2 rest/kg (ml/kg/min)	6.4 ± 1.9	6.3 ± 1.9	NS
VO2max/kg (ml/kg/min)	32.7 ± 9	38.8 ± 6	0.032
VO2max% (%)	81.1 ± 19.7	99.1 ± 20.2	0.006
Heartrate max (bpm)	183.6 ± 9.8	187.8 ± 19.6	NS
Time (min)	9.0 ± 2.5	13.1 ± 2.8	<0.001
Load (Watt)	125.3 ± 44.7	195.9 ± 57.2	<0.001
Load% (%)	82.5 ± 47.3	112.6 ± 34.6	0.024
VE/VCO2 slope	26.9 ± 4.6	24.6 ± 2.5	NS
OUES	1939 ± 503	2489 ± 509	0.001
RER	1.14 ± 0.05	1.21 ± 0.07	0.009
VE (l/min)	61.1 ± 17.6	87.1 ± 23.1	0.002
VAT (%)	66.9 ± 17.4	50.2 ± 9.2	0.001

HR: hearth rate; bpm beats per minute; VO2max: maximal oxygen consumption at peak exercise; VAT: ventilatory anaerobic treshold; RER: respiratory exchange ratio; VE: minute ventilation; VE/VCO2: minute ventilation divided by CO2 production; OUES: Oxygen Uptake Efficiency slope

- Diagnosis:
 - Acute lymphoblastic leukemia: n=15
 - Acute & chronic myeloid leukemia: n=2 & n=2
 - Anaplastic large cell lymphoma and myelodysplastic syndrome: n=1 & n=1
- Myeloablative conditioning regimens:
- Total body irradiation based (1200 cGy): n=14
- Busulfan based: n=7
- +Cyclophosphamide ($\geq 120 \text{ mg/kg}$): n=10
- Acute GvHD (grade II to IV): n=8 -
- Chronic GvHD: n=1 —

CONCLUSIONS

Adolescents and young adults after HSCT have lower maximal exercise performance and a less favorable metabolic profile in comparison with healthy controls. Leptin/adiponectin ratio and whole body fat percentage are negatively correlated with physical fitness, stressing the importance of healthy lifestyle promotion and physical rehabilitation in this patient population.

Contact: kathleen.dewaele@uzgent.be

Poster presented at:

