The Evolving Role of WES in the Diagnosis of Disorders of Sex Development (DSD)

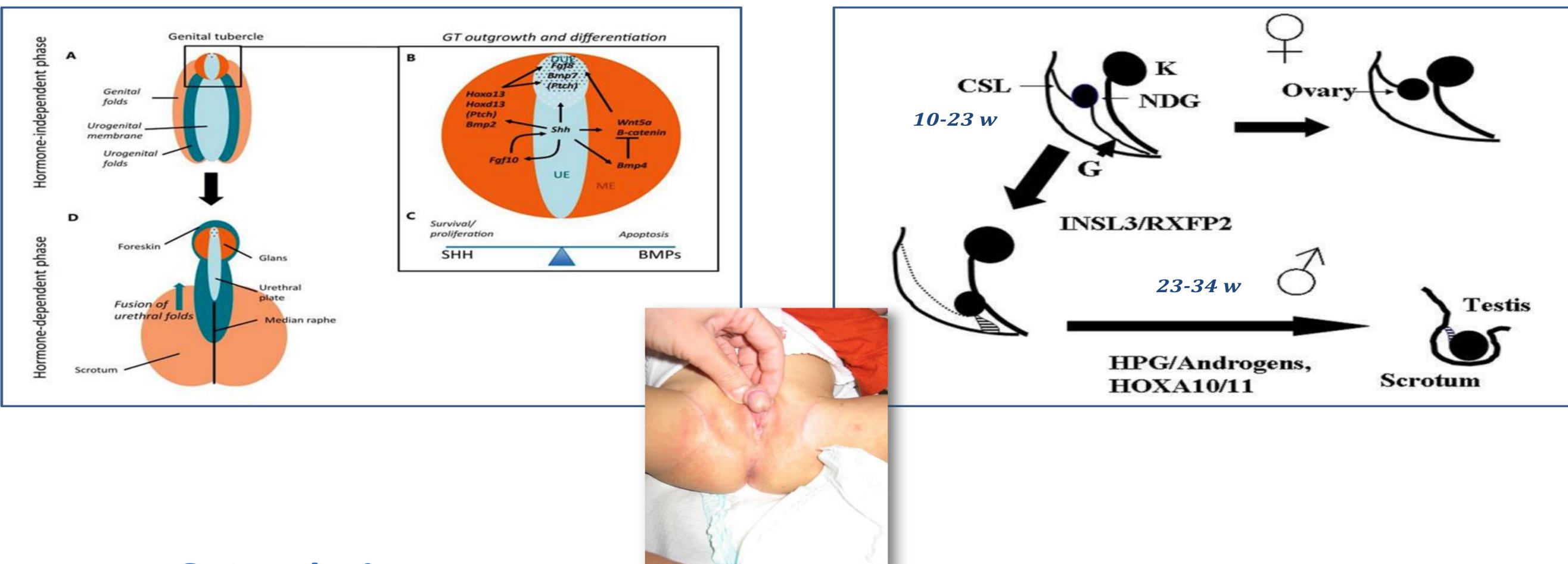
<u>Yardena Tenenbaum-Rakove</u>r ^{1,2}, Osnat Admoni¹, Ghadir Elias-Assad¹, Shira London¹, Marie Noufi-Barhoum¹, Hana Ludar¹, Tal Almagor¹, Rita Bertalan³, Anu Bashamboo³, Dani Berckovitz⁴, Boris Chartin⁵, Kenneth McElreavey⁴

- ¹Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
- ²The Rappaport Faculty of Medicine, Technion, Haifa, Israel
- ³Institute Pasteur, Rue Dr Roux, Paris, France
- ⁴Tel Hai College and GGA Galilee Genetic Analysis Lab, Kazerin, Israel
- ⁵Pediatric Urology Department, Shaare Zedek Medical Center, Jerusalem, Israel

Introduction:

Disorders of sex development (DSD) are classified as a congenital discrepancy between external genitalia, gonadal and chromosomal sex. Despite extensive laboratory and imaging investigation, the etiology of DSD is unknown in more than 50% of patients.

The aim of this study to report our experience in the era of WES in the diagnosis of DSD


Results:

Molecular genetic findings

No.	Karyotype	Age at presentation (days)	Age at WES (years)	WES findings	Type of mutation
1	46,XY	10	12.8	LGR8 (RFXP2)	AD c.A664C, p.T222P
2	46,XY	90	8	HSD17B3	AR-novel c.673G>A, p.V225M
3	46,XY	7	12	WT1	Splice mutation-de-novo c.1433-3C>G
4	46,XY	12	11.3	BMP4	AD- <i>de novo</i> c.G209T, p.R70L
5	46,XX	30	11	POR	AR- previously described c.G1615A, p.G539R
6	46,XY	25	3.5	CHDR7	AD- <i>de novo</i> c. 1480C>T, p.R94T
7	46,XY	14	11	No pathologic variants	
8	46,XY	455	8	Variants of unknown significance	
9	46,XY	18	12.75	No pathologic variants	
		73 (7-455)	10 (3.5-12.8)	67%	

Bone morphogenetic protein 4 (BMP4) has a role in external genital development

Insulin-like factor 3 receptor (LGR8) has a role in testicular descent in mammals

Summary & Conclusions:

- Based on our previous approach, specific diagnosis of the etiology of DSD is often delayed to the second decade of life, particularly in 46,XY DSD
- > Likely gender identity at adulthood is the major consideration in determining sex of rearing
- > The specific etiology of DSD is crucial for this decision
- Our findings indicate that WES identified the etiology of DSD in up to 70% of cases including the following: LGR8, HSD17B3, WT1, BMP4, POR & CHD7 gene mutations
- The clinical significance of WES findings is not always known and this may cause difficulties in genetic counselling
- > WES plays an important role in early molecular diagnosis of DSD with important implications for sex of rearing

