

Heterozygous CYP11A1 mutation associated with 46XY **Disorder of Sex Differentiation and mild Adrenal Insufficiency**

Philippa Bowen¹, Nicky Nicolls ¹, Dinesh Giri¹

¹Department of Paediatric Endocrinology, Bristol Royal Hospital for Children, United Kingdom The authors declare no conflicts of interest

Encodes the P450 side chain cleavage(scc) enzyme

- This protein localises to the mitochondrial inner membrane
- It catalyses the conversion of cholesterol to pregnenolone
- The first and rate-limiting step in the synthesis of all steroid hormones

- Preterm infant (36 weeks gestation)
- Birthweight 2.9 kg
- Non-consanguineous parents
- Hypoglycaemia on day 1 of life that quickly resolved
- Atypical genitalia noted at birth, raising concerns of a possible disorder of sex development; perineal hypospadias, chordee and cryptorchidism

Table 1: Initial investigations from clinical case Investigation Result **46XY** Karyotype USS Pelvis No mullerian structures Testes in inguinal canal

bilaterally Stable Electrolytes Inappropriately raised plasma Hypoglycaemia screen

Figure 1: Diagram of adrenal steroid biosynthesis¹ The red oval depicts where the CYP11A1 gene, that encodes the P450 side chain cleavage enzyme, acts to convert cholesterol to pregnenolone

P450scc enzyme deficiency

- Is a rare disorder
- Presents as primary adrenal insufficiency with varying degrees of DSD in 46XY individuals
- Genetics: typically due to biallelic loss of function variants in CYP11A1, either homozygous or compound heterozygous

	insulin level at time of hypoglycaemia
17 Hydroxy	Normal
progesterone	
Aldosterone	Normal
Renin	Normal
Short synacthen test	Suboptimal (peak cortisol 397nmol/l)

46XY DSD gene panel

- Heterozygous frameshift mutation in CYP11A1 c.835delA p.(lle279Tyrfs*1)
- Classified as a pathogenic variant
- Recessive state typically causes severe adrenal insufficiency and 46XY sex reversal and have been widely reported
- Heterozygous CYP11A1 mutation contributing to the phenotype are extremely unusual and rare
- In the absence of other explanation, it is possible that the

mutations

heterozygous CYP11A1 mutation in our patient is contributing to the phenotype of mild adrenal insufficiency and undervirilisation

Conclusion

- Recessive (homozygous and compound heterozygous) CYP11A1 mutations are known to result in severe adrenal insufficiency and DSD in 46XY infants.
- Heterozygous loss of function mutations in CYP11A1, such as that in our patient, can cause mild adrenal insufficiency and undervirilisation in 46XY.individuals
- Due to the rarity of such descriptions in the literature, more reported cases and molecular studies might add to the body of evidence

Reference

1. Bacila I, Elder C, Krone N, Update on adrenal steroid hormone biosynthesis and clinical implications, Archives of Disease in Childhood 2019/archdischild-2017-31387

