

NORMOSMIC HYPOGONADOTROPIC HYPOGONADISM: AN INTRAFAMILIAR CASE

Joana Soares^{1,2}, Filipa Briosa^{2,3}, Rita Valsassina^{2,3}, Marta Amorim⁴, Catarina Limbert²

¹ Department of Paediatrics, Hospital de Santo André, Leiria, Portugal ; ² Department of Paediatric Endocrinology, Hospital Dona Estefânia, Lisboa, Portugal; ³Department of Paediatrics, Hospital Beatriz Ângelo, Loures, Portugal; ⁴Department of Genetics, Hospital Dona Estefânia, Lisboa, Portugal

BACKGROUND AND METHODS

- Idiopathic hypogonadotropic hypogonadism (IHH) is due to the failure of gonadotrofin releasing hormone (GnRH) secretion which impairs the physiological initiation of puberty
- About 30 to 50% of IHH is associated to hereditary causes and about 50 mutated genes have been identified
- We present three intra-familial cases of normosmic IHH (nIHH) related to a new association of two heterozygotic TARC3 mutations

CASE REPORT

- 16-year-old male (III-1)
- Referred due to **no pubertal development:**
 - **Small** intrascrotal testes (2-3 ml)
 - **Spair** pubic hair (P1-P2)
 - Small phallus (4 cm)
 - **Height:** 161,5 cm (Z-score -1,57) and **weight:** 61,9 kg (z-score 0,08)
 - Bone age 12.5 years
 - Normal body proportions
 - **Normal** sense of smell, **no** renal or craniofacial abnormalities.
- Two of his three sisters also presented complete hypogonadism at 14 and 13 years old (III-3 and III-4), both had a normal sense of smell
- Onset of their mother's (II-1) menarche was at 15 years-old. Their father (II-2) had a normal pubertal development in adolescence

Figure 1. Family Pedigree

Solid symbols indicate affected subjects (III-1, III-3, III-4), open symbols indicate subjects with no mutations. The inside symbols \Diamond and \dagger indicate unaffected heterozygotes - \Diamond - mutation c.824G>A (p.Trp275*) inherited from the subject II-2 and † mutation c.689G>A (p.Arg230His) from subject II-1.

		Investigation			
Subject	III-1	III-3	-4		
LH (mIU/ml)	0,2	<0,1	<0,09		

FSH (mIU/ml)	0,6	0,7	0,29
Ratio FSH/LH	3	7	3,2
Estradiol (pg/ml)	ND	<10	<10
Testosterone (ng/mL)	0,14	0,15	ND
Prolactin (ng/ml)	3,42	4,3	ND
IGF-1 (ng/mL)	272	144	144
Bone age (years)	12,6	12,5	10
LH pulsatility	Apulsatile		

- Low sex steroid and gonadotropin levels
- **No evidence** of a mass lesion in the cerebral MRI
- **Normal** Karyotypes
- **Normal** function of the anterior pituitary, thyroid, and

adrenal glands

- Genetic testing in all subjects:
 - Two heterozygous mutations on TACR3 gene:
 - c.824G>A (p.Trp275*) from the father
 - c. 689G>A (p. Arg230His) from the mother

The father's mutation was previously described as **pathogenic**, but the mother's mutation was classified as of **uncertain significance at date**

These findings support nIHH diagnosis and this family cluster supports the evidence of the pathogenicity of the second variant

Follow-up

- Hormonal replacement was started in III-1 and III-3 with success (III-4 is awaiting)

CONCLUSION

Congenital IHH is a very rare genetic disorder that if undiagnosed or untreated may lead to infertility associated to complete or partial absence of GnRH. TAC3/TACR3 mutations have a critical importance on sexual maturation and are an important genetic cause of nIHH that should be particularly searched in patients with high serum FSH/LH ratio. The treatment of nIHH is based on sex steroids replacement, therefore promoting the pubertal development.

REFERENCES

- 1. Topaloglu AK. Update on the Genetics of Idiopathic Hypogonadotropic Hypogonadism. J Clin Res Pediatr Endocrinol 2017;9(Suppl 1):113-122. doi: 10.4274/jcrpe.2017.S010.
- 2. Topaloglu AK et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nature Genetics 2009; 41;3: 354-358.
- 3. Topaloglu AK, Kotan LD. Genetics of Hypogonadotropic Hypogonadism. Endocr Dev. Basel, 2016;29:36–49. doi: 10.1159/000438841.
- 4. Shekhar S. Familial normosmic idiopathic hypogonadotropic hypogonadism: is there a phenotypic marker for each genetic mutation? Report of three cases and review of literature. BMJ Case Reports 2012. doi:10.1136/bcr-2012-007537.
- 5. Aoyama K et al. Molecular genetic and clinical delineation of 22 patients with congenital hypogonadotropic hypogonadism. J Pediatr Endocrinol Metab 2017;30:10.doi: https://doi.org/10.1515/jpem-2017-0035.
- 6. Francou B et al. Normosmic Congenital Hypogonadotropic Hypogonadism Due toTAC3/TACR3Mutations: Phenotypes and Novel Mutations. PLoS ONE 2011;6:1-11.

Joana Soares

Sex differentiation, gonads and gynaecology or sex endocrinology

Poster presented at:

