Exocrine pancreatic insufficiency and vitamin K deficiency associated to Octreotide therapy in congenital hyperinsulinism: An under-

recognized potential adverse effect.

P. Ros-Pérez^{1,2}; L. Golmayo¹; ML Cilleruelo^{1,2}; C. Gutierrez^{1,2}; P. Celaya¹; N. Lacamara¹; I. Martinez-Badás¹; M. Güemes^{3,4}; J. Argente^{2, 3,4,5}.

¹ Department of Pediatrics. Hospital Universitario Puerta de Hierro-Majadahonda.² Department of Pediatrics, Universidad Autónoma de Madrid. ³Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigción la Princesa. ⁴CIBER de obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III ⁵IMDEA Food Institute, CEI UAM + CSIC. Madrid, Spain **P3-276**

The authors have nothing to declare

Hospital de Puerta de Hierro -

lospital Infantil Universitario

Niño Jesús

···· Comunidad de Madrid

Madrid Majadahonda

BACKGROUND

- Congenital hyperinsulinism (CH) is the most frequent cause of persistent hypoglycemia in the newborn.
- Octreotide, a long-acting somatostatin analogue (SSA), is a second line treatment for diazoxide unresponsive CH patients.
- Although it has been found to be a safe and effective treatment, long-term benefits and side effects have not been thoroughly evaluated.
- Furthermore, some authors have emphasized that exocrine pancreatic insufficiency is a common but under-recognized adverse reaction in

adults treated with octreotide.

To our knowledge, no pediatric patient with somatostatin analogue-induced pancreatic exocrine insufficiency has been reported to date.

Our aim is to report the first case of an infant with CH and exocrine pancreatic insufficiency and secondary vitamin K deficiency, associated to Octreotide therapy.

CASE REPORT

- A 7 month and 3 week old male with diazoxide unresponsive diffuse CH (heterozygous autosomal dominantly mutation in the ABCC8 gene; NM_000352.4:c.357del) was found with bruising of legs, back and forearms after two months of SSA treatment onset (8.9 mcg/kg/day divided into 4 daily doses)(Fig. 1 a,b,c). Bruises and bleeding remnants were also observed at the puncture points of the sensor (Fig. 1 a).
 - In addition to intermittent capillary blood

glucose measurement, Real-time subcutaneous continuous glucose monitoring was used for glycemic control (Guardian [™] Sensor 3; Medtronic Diabetes, Northridge, CA, USA)(Fig. 2).

Table 1. Laboratory findings	nitial sample After vitamin K		RR*	
Blood analysis				
Prothrombin Activity	7%	77%	70-120%	
Prothrombin Time	117.4s	15.3s	11.5-15.3s	
International Normalized Ratio	9.1	1.18	0.8-1.2	
Activated Partial Thromboplastin Time	88.4s	36.7	35-46s	
Coagulation factors				
Factor II	4%	45%	7-120%	
Factor VII	10%	99%	55-170%	
Factor IX	8%	55%	60-150%	
Factor X	3%	60%	70-120%	

*RR: Reference range

Table 2. Fecal analysis	Initial samples	Initial samples After enzyme replacement		
Fat fecal quantification (g/24h)	19.1/18.2	8.1	2.9	< 6
Elastase-1 enzyme (mcg/g)	125	-	155	>200
*NIV/unarmal.values				

ivv: normai values

Laboratory findings identified vitamin K deficiency as the cause of the cutaneous hemorrhagic syndrome with an abnormal coagulation values and a decrease in all vitamin K-dependent proteins (Table 1).

- Coagulopathy was resolved with vitamin K treatment (5 mg/day intravenous; 3 days). The patient was discharged without incidents.
- Further investigations revealed association of <u>steatorrhea</u> and decreased fecal elastase-1 levels, both markers of malabsorption. Fecal Elastase-1 enzyme levels confirmed the exocrine pancreatic insufficiency, which was resolved after the pancreatic enzymes replacement (Table 2). Cystic fibrosis and bacterial overgrowth syndrome were excluded.

Outcome: The patient is now 11 months old. He has adequate neurodevelopment, normal growth and weight pattern (Figures 3 and 4).

- He has also developed cholelithiasis requiring ursodeoxycholic acid therapy, with favorable outcome.
- He has required up to 11 mcg/kg/day of Octreotide.

Purificación Ros-Pérez

To emphasize the potential adverse effects and clinical relevance of the exocrine pancreatic CONCLUSION

insufficiency associated to Octreotide treatment I congenital hyperinsulinism.

1. Hosokawa Y et. al. Endocr J. 2017 Sep 30;64(9):867-880 2. Lamarca A et al. Expert Rev Gastroenterol Hepatol. 2018 Jul;12(7):723-731. 3. Saif MW, et al. Expert Opin Drug Saf. 2010 Nov;9(6):867-73.

Fetal, neonatal endocrinology and metabolism (to include hypoglycaemia)

