Congenital Hyperinsulinism in Kosova

Inheritance

Splicing

her father

mutation from

Vjosa Mulliqi Kotori, Afrim Kotori, Elida Krasniqi,

University Clinical Center Prishtina, Pediatric Clinic, Department of Endocrinology (1)

Li-Ori Polyclinic, Prishtina (2)

Introduction

Hypoglycemia in infants and children can lead to seizures, developmental delay, and permanent brain damage.

Hyperinsulinaemic hypoglycaemia (HH), refers to a clinically, genetically and morphologically heterogeneous group of disorders associated with dysregulated insulin secretion.

Biochemical details of patients								
patient		1		2		3	4	
Age at diagnose		2 days		3 weeks		3 days	6 months	
Glucose (mmol/l)		1.4		1.9		1.7	2.5	
Insulin (mU/mL)		47.5		39.5		63.2	9.0	
C peptide (ng/ml)		4.6		4.5		4.7	2.1	
Urine ketones		negative		negative		negative	negative	
Glucagon response		inappropriate		inappropriat	e	inappropriate	inappropriate	
Glucose infusion rate (mg/kg/min)		15		20		15	>8	
Cortisol		>500 nmol/1		>500 nmol/1	-	>500 nmol/1	>500 nmol/1	
Genetic Testing								
patient	1		2		3		4	
Mutation details		10		73		eterozygous utation	Still not known	
gene	ABO	288	AB	C88	A	BC88	Still not known	

Missense

mutation,

Autosomal

recessive HH

Missense

mutation,

Autosomal

dominant HH

It is the most common cause of persistent hypoketotic hypoglycaemia in neonates and infants with the incidence 1:50.000 live births, and is associated with a significant risk of permanent brain damage.

Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) that are involved in the regulation of insulin secretion from pancreatic β cells have been described to be responsible for the underlying molecular mechanisms leading to congenital HH.

Aim of the study:

The aim of the study is to present clinical manifestation, diagnosis, molecular genetics and therapy in children with different forms of Hyperinsulinemic Hypoglycemia(HH), diagnosed in Department of Endocrinology in Pediatric Clinic in Kosova.

Methodology

Retrospective study of CHI patients diagnosed and treated in Pediatric Clinic, Department of Endocrinology in Kosova, their clinical presentation, biochemical markers at diagnose and treatment modalities.

Results

3 cases were diagnosed in neonatal period and 1 case was diagnosed in infancy, in a girl six months old.

None of the mothers had Gestational Diabetes and no consanguinity.

Patients: clinical feature							
patient	1	2	3	4			
sex	female	male	female	female			
Birth weight (kg)	3.8 (+ 1.3 SD)	4.2 (+2.6 SD)	3.7 (+1.1 SD)	3.5 (+1.1SD)			
Birth length (cm)	57 (+2.6 SD)	56 (+2.5 SD)	53 (+1.3 SD)	52 cm (+1.2 SD)			
Seizures	common	common	common	common			
hypotonia	yes	yes	yes	yes			
Poor sucking	yes	yes	yes	yes			

Treatement Modalities								
patient	1	2	3	4				
	Octreotide 20 mcg/kg/day, divided in four doses Nifedipin sol. 1.0 mg/kg/day divided into 2 doses	Octreotide 15 mcg/kg/day, divided in four doses	Diazoxide 15 mg/kg/day, three divided doses	Diazoxide 20mg/kg/day, three divided doses, Lanreotide 60 mg, 1 x 28 days				
	Subtotal pancreatectomy							

Conclusions

Hyperinsulinemic Hypoglycemia (HH) most commonly presents during the neonatal period, but can also present during infancy.

Newborns with HH may be macrosomic due to intrauterine

References

1. Hüseyin Demirbilek, Khalid Hussain. Congenital Hyperinsulinism: Diagnosis and Treatment Update. J Clin Res Pediatr Endocrinol 2017;9 (Suppl 2):69-87

2. Kapoor RR, Flanagan SE, Arya VB, Shield JP, Ellard S, Hussain K. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur J Endocrinol. 2013;168:557– 564

3. Kapoor RR, Heslegrave A, Hussain K. Congenital hyperinsulinism due to mutations in HNF4A and HADH. Rev Endocr Metab Disord. 2010;11:185–191.

4. Flanagan SE, Kapoor RR, Hussain K. Genetics of congenital hyperinsulinemic hypoglycemia. Semin Pediatr Surg. 2011;20:13–17.

hyperinsulinemia, however the absence of macrosomia does not exclude HH.

The management of patients with severe CHI is challenging and requires multidisciplinary approach.

Long term and careful monitoring id needed and neurological development should be closely followed up.

Bone, growth plate and mineral metabolism

Vjosa Mulliqi Kotori

Poster presented at:

