

Imprinting defects and copy number variations in short children born small for gestational age

Masayo Kagami¹ (kagami-ms@ncchd.go.jp), Akie Nakamura^{1,2}, Takanobu Inoue¹, Sayaka Kawashima¹, Kaori Hara¹, Tomoko Fuke¹, Keiko Mastubara¹, Maki Fukami¹, Tsutomu Ogata^{1,3}

- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan

Introduction SGA-SS Mondgenic/ Silver-Russell/ Prader-Willi syndrome syndrome Pathogenic CNVs Kagami M, et al. Inoue T, et al. Clin Other Genet Med 2017 **Epigenetics 2017** imprinting disorders CNVs: copy number variations (UPD(20)mat, Kawashima S, et al. JRD(16) mat ete. UPD: uniparental disomy J Clin Endcrinol Inoue T, et al. J **Metab 2018 Med Genet 2018**

- •SGA-short stature (SGA-SS) is a heterogeneous condition.
- •Some imprinting disorders, monogenic disorders, and pathogenic copy number variations lead to SGA-SS.
- •Silver-Russell syndrome (SRS) is a typical imprinting disorder having SGA-SS.

Methods SGA-SS cases Methylation analysis using pyrosequencing • *H19*-DMR (ch11) • IG-DMR (ch14) • *PEG1, PEG10*-DMR (ch7) MEG3-DMR (ch14) • PLAGL1-DMR (ch6) • SNRPN-DMR (ch15) • A/B-DMR (ch20) • KvDMR (ch11) • ZNF597-DMR (chr16) Abnormal methylation Hypomethylation Hypomethylation of Normal methylation levels of the DMR(s) status in 10 DMRs of the H19-DMR the PEG1- and PEG10other than H19-, PEG1-, and PEG10-DMR DMR Catalog aCGH *H19*-DMR Microsatellite MS-MLPA analysis (8X60k) Hypomethylation analysis for aCGH analysis chromosome 7 FISH Genetic disorders UPD(7)mat Imprinting disorders Williams syndrome 4p- syndrome other than SRS etc. Temple syndrome Prader-Willi syndrome

UPD(20)mat

etc.

Aim

To clarify the contribution of imprinting defects and pathogenic copy number variations to SGA-SS.

Subject

Subjects:

346 patients clinically diagnosed with SRS or SGA-SS by presenting doctors

Inclusion criteria

SGA: Birth weight and height < 10 percentile Short stature:

- Age ≥ 2years
- Height < -2.0 SDS before initiation of GH treatment

The cases clinically or genetically diagnosed as known syndromes were not included (ex. Prader-Willi syndrome, Turner syndrome).

Netchine-Harbison clinical scoring system (NH-CSS)

- 1.SGA (birth weight and/or birth length ≤-2 SD)
- 2.Postnatal growth failure (height ≤-2 SD)
- 3. Relative macrocephaly at birth
- 4. Protruding forehead
- 5.Body asymmetry
- 6.Feeding difficulties and/or low BMI (≤-2 SD)

SRS: ≥4 of 6 items

- NH-CSS≥4 : SRS compatible group (n=163)
- NH-CSS= $3+\alpha$ (triangular face and/or fifth finger clinodactyly): SRS-like group (n=52)
- NH-CSS≤3: non-SRS group (n=131)

esu	
	117

Genetic causes	SRS-compatible SRS-like		non-SRS
	n=163	n=52	n=131
Genetic causes of SRS	47 (29%)	11 (21%)	5 (4%)
•Hypomethylation of the <i>H19</i> -DMR	40	8	3
•UPD(7)mat	7	3	2
Imprinting disorders other than SRS	20 (12%)	4 (8%)	7 (5%)
•Temple syndrome	8	1	2
 Prader-Willi syndrome 	2	0	1
•UPD(20)mat	3	1	1
•UPD(16)mat	2	0	0
•UPD(6)mat	1	1	1
 Parthenogenesis 	1	0	0
•UPD(11)mat mosaic	1	0	0
•Trisomy 14/UPD(14)mat mosaic	0	0	1
•11p15 maternal duplication	2	1	0
•20q13 maternal duplication	0	0	1
Pathogenic CNVs	5 (3%)	7 (14%)	7 (5%)
Unknown	91 (56%)	30 (58%)	112 (85%)

	Details of pathogenic CNVs	SRS- Compatible	SRS-like	non-SRS
	4p deletion (Wolf-Hirschhorn syndrome)	1	1	
	1q24q25 deletion	1		
	Mosaic trisomy 18	1		
	17p12 duplication	1		
	Xq26.2 duplication	1		
	12q14 deletion (including HMGA2)		2	
	7q11.23 deletion (Williams syndrome)		2	
	19q13.11-12 deletion		1	
	2p21.1 duplication		1	
_	1q21.2 deletion			1
_	22q11.2 deletion (22q11.2 deletion syndrome)			1
	1p32.2duplication/3p12.1duplication/Xp22.3 3 duplication			1
	8p23.2 duplication/19p13.12 deletion			1
	5q35.2 duplication (including NSD1)			2
	Xp deletion (Turner syndrome)			1

Discussion

- In this study, we clarified the involvement of the imprinting disorders and pathogenic copy number variations for SRS and SGA-SS.
- Imprinting disorders other than SRS with hypomethylation of the H19-DMR and UPD(7)mat were detected over 10% of SRS-compatible group.
- For the patients with negative SRS genetic test results, genetic testing of TS14 should be considered.
- Our results highlight the clinical importance of imprinting defects and pathogenic CNVs as genetic causes of SGA-SS.

Conclusion

A part of SRS and SGA-SS is caused by imprinting defects other than H19-hypo and UPD(7)mat and pathogenic CNVs.

