A novel mutation in the Thyroglobulin gene resulting in Neonatal **Goiter and Congenital Hypothyroidism in an Eritrean infant**

Stern E,¹ Kassif E,² Schoenmakers N,³ Gruber N,¹ Pinhas Hamiel O,¹ Yeshayahu Y ^{1,4}

¹ Pediatric Endocrinology and Diabetes Unit, Sheba Medical Center, Edmond and Lily Safra Children's Hospital, Ramat-Gan, Israel

² Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

³ University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom.

⁴ Pediatric Endocrinology and Diabetes Unit, Assuta Medical Center, Ashdod, Israel

Background

- Congenital hypothyroidism (CH) has a reported incidence between 1/2000 1/4000 live births
- 85% of cases are sporadic and secondary to a structural abnormality of the thyroid gland (dysgenesis) including thyroid agenesis or an ectopic or sublingual thyroid gland
- 15% of cases are hereditary and secondary to an inborn error of thyroid hormone synthesis
- These conditions are usually transmitted in an autosomal recessive fashion, and can cause varying severity of hypothyroidism, with or without other clinical features (Table 1)

Gene	Gene Symbol	Chromosomal location	Process affected	Clinical features
Sodium iodide symporter	SLC5A5 (NIS)	19p13	Iodide trapping	Reduced thyroidal iodide or pertechnetate
				uptake
Pendrin	SLC26A4 (PDS)	7q31	Iodide efflux into follicular lumen	Sensorineural deafness
				enlarged vestibular aqueduct
				PIOD and goiter
Thyroglobulin	TG	8q24	Matrix protein for hormone synthesis	Hypothyroidism, goiter, absent or very low
				serum TG level
Thyroid peroxidase	TPO	2p25	Iodide organification/coupling reaction	TIOD or PIOD
Dual oxidase 2	DUOX2 (THOX2)	15q15.3	H ₂ O ₂ generation (co-substrate for TPO)	Permanent or transient CH
				PIOD
DUOX maturation factor 2	DUOXA2	15q15.3	H ₂ O ₂ generation (co-substrate for TPO)	Mild CH
				PIOD
Iodotyrosine deiodinase	IYD (DEHAL1)		Intrathyroidal iodide recycling	Negative CH screen, goiter, hypothyroidism
				(after neonatal period)

Table 1: Genetic causes of Congenital Hypothyroidism

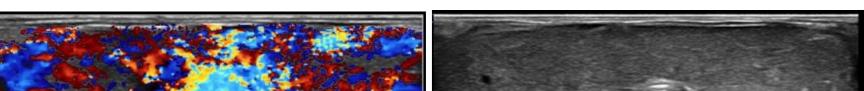
Case report

- 35 year old woman of Eritrean origin, referred due to the finding of a neck mass on fetal ultrasound at term
- A large mass visualized in the neck and upper chest consisting of 2 lobes consistent with an enlarged thyroid (Figure 1)
- Following delivery initial examination was notable for a large diffuse neck swelling (Figure 2)

• Following results of Thyroid Function Tests treatment with Levothyroxine was commenced on day 2 of life

Thyroid function

	TSH (mIU/l) (0.4-20)	FT4 (pmol/l) (0-30)	FT3 (pmol/l) (2.46-9.8)
Day 1	272.39	6.3	5.5
Day 4	47.64	9.9	12.8
Day 7	12.72	12.7	7.9


Laboratory investigations

- Thyroglobulin 0.7 picg/l (0-55)
- Thyroglobulin antibody <20U/ml
- Thyroid Stimulating Antibodies 575% (0-150)
- Thyroid blocking antibodies undetectable

Figure 1: Goiter on antenatal US

Figure 2: Neonatal Goiter

Genetics

- Sanger sequencing of the thyroglobulin gene (TG, ENST00000220616.8) revealed a homozygous donor splice site mutation at the exon 30-intron 30-31 boundary; c.5686+1delG (figure 5)
- This mutation has not previously been reported in the literature, and its functional effects have not been definitively evaluated. However, point mutations resulting in single nucleotide substitutions at the same site (c.5686+1G>A, T or C) have been reported in association with CH
- These observations, and the clinical context, suggest that TG c.5686+1delG is highly likely to be the cause of CH in this patient

Discussion

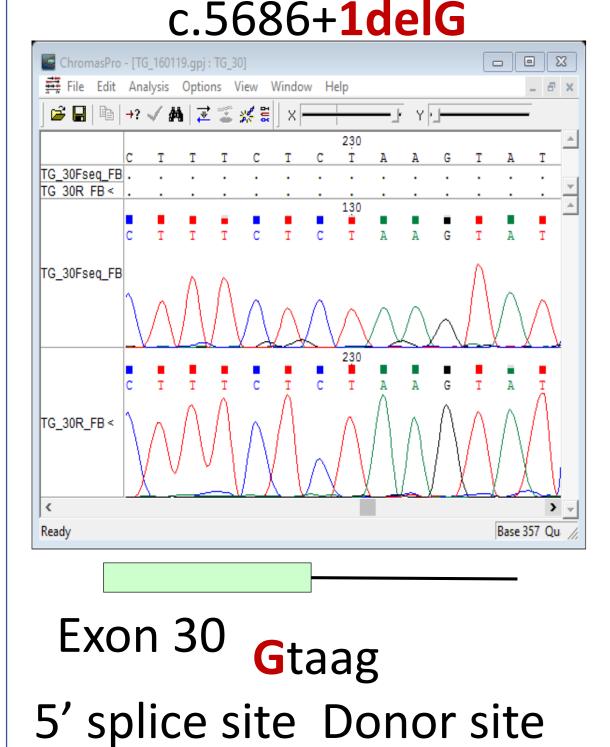


Figure 5: Mutation in TG gene on Sanger sequencing

- Thyroglobulin (TG) is crucial for thyroid hormone biosynthesis and storage in the thyroid follicular lumen
- TG mutations are a common cause of dyshormonogenesis with an estimated frequency of at least 1:100,000 births
- Affected individuals exhibit a spectrum of thyroid dysfunction which can range from severe CH to euthyroid goitre. Foetal goitre has also been reported
- The biochemical hallmark of CH due to TG mutations comprises an inappropriately low serum thyroglobulin level despite elevated TSH concentrations
- This case highlights the usefulness of genetic testing as the parents can be counselled re risk to future children and further pregnancies can be monitored for foetal goiter

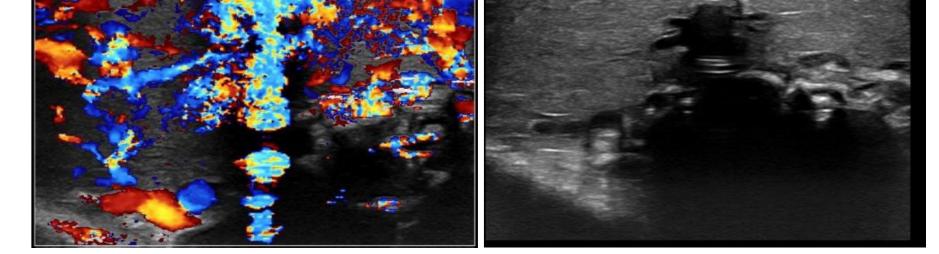
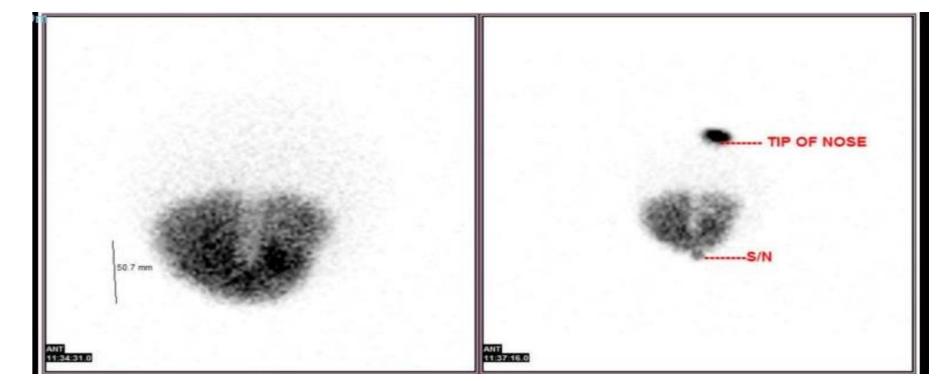



Figure 3: Thyroid gland as visualized on post-natal ultrasound and with doppler

Figure 4: Diffusely enlarged thyroid with increased uptake on technetium scan

Poster presented at:

