

Increased burden of common risk alleles in children with a significant fracture history

Despoina Manousaki^{1,2}, Anders Kämpe³, Vince Forgetta¹, Riikka E. Makitie^{3,4}, Ghalib Bardai⁵, Alexandre Belisle⁵, Rui Li⁵, Outi Makitie^{3,4} Frank Rauch⁶, J. Brent Richards^{1,2,7,8}

¹Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Canada; ²Department of Human Genetics, McGill University, Montreal, Canada; ³Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden;⁴Division of Endocrinology, Children's Hospital, Helsinki University Hospital and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Finland; ⁵McGill Genome Center, McGill University, Montreal, Canada; ⁶McGill University, Ingram School of Nursing, and Shriners Hospitals for Children, Montreal, Canada; ⁶Department of Medicine, Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada; ⁶Department of Twin Research and Genetic Epidemiology, King's College London, London, UK

Background

- •Fractures are common in children, but a significant fracture history, defined as low-trauma vertebral fractures or multiple long bone fractures, is rare.
- •Children with such history and no osteogenesis imperfecta (OI) are often presumed to have another Mendelian disease.
- •However, in adults, multiple common risk alleles of small effect influence risk of fracture.
- •We tested if subjects with a significant childhood fracture history have an increased burden of risk alleles.
- •To do so, we applied a polygenic risk score (gSOS) which predicts osteoporotic fracture, in a cohort of subjects with significant fracture history in childhood and no identified OI.

Results

a. 3 cohorts with significant fracture history

Table 1: Demographics of the 3 cohorts.

	Canadian cohort	Finnish cohort 'fracture prone'	Finnish cohort 'primary osteoporosis'
N	60	53	18
Age (median/range)	11.4(1-21.2)	10.3(4.3-16.8)	_
Women	22 (37%)	16(30%)	_
zBMD (mean/sd)	-1.82(1.3)	-0.46(1.0)	-1.84(1.34)
Vertebral fracture: yes	11 (18%)	14(26%)	13(72%)
Any long bone fracture: yes	54(90%)	49(92%)	16(89%)
Long bone fracture (median/range)	2.5(0-12)	3(0-7)	2(0-7)

b. Results: gSOS estimates and comparison to UK Biobank

Table 2: Results of the main analysis in the entire juvenile fracture cohort and of the sensitivity analyses in subsets of the main cohort.

	gSOS	p-value for comparison with UK Biobank		
Main analysis				
All 'juvenile fracture' (n=131)	-0.47 (1.05)	1.1 x10 ⁻⁵		
UK Biobank (n=80,027)	0.00 (1.00)	_		
Sensitivity analyses in subsets of the main cohort				
Canadian cohort (n=60)	-0.82 (0.92)	3.7 x10 ⁻⁹		
Finnish 'primary osteoporosis' cohort (n=18)	-0.54 (1.01)	0.04		
Finnish 'fracture prone' cohort (n=53)	-0.04(1.06)	0.77		
'Suspicion of monogenic disease' (n=78)	-0.76(0.94)	5.3 x10 ⁻¹⁰		

Conclusions

- We provide evidence for a polygenic etiology of fractures in children with significant fracture history and no OI.
- Patients with clinically-apparent Mendelian disease referred to specialists might have a burden of common risk alleles which could influence their risk of fracture.

Methods

Figure 1: Development of a polygenic risk score for osteoporotic fracture (gSOS) from heel ultrasound (Forgetta et al, Biorxiv 2018).

c. Distribution of gSOS : juvenile fracture cohort vs UK Biobank

Figure 3: Distribution of gSOS in 131 individuals of the juvenile fracture cohort (pink) and in 80,027 subjects from UK Biobank (blue).

d. Monogenic vs polygenic etiology of significant fracture history

Figure 4: Among 108 individuals who underwent panel sequencing for OI genes, percentage of those with a gSOS below the mean in excess to what we would expect by chance alone, and of those with an identified OI-related mutation.

