Growth, pubertal course and long-term outcome of 46,XY boys born with atypical genitalia and low birthweight

L. Tack, S. Van der Straaten, S. Riedl, A. Springer, S.F. Ahmed and M. Cools On behalf of the I-DSD consortium*

* P.M. Holterhus, N. Hornig, M. Niedziela, Z. Kolesinska, F. Barinio, A. Balsamo, S. E. Hannema, A. Nordenström, S. Poyrazoglu, F. Darendeliler, R. Grinspon, F. Aljuraibah, C. Acerini, G. Guaragna-Filho, A. Trevas Maciel-Guerra, G. Guerra-Junior, U. Tonnhofer, M. Hiess and J. Weninger

KEY MESSAGES

1/3 SGA boys show incomplete catch-up growth

Patient characteristics

Urological

- No difference in urological outcome between AGA and SGA cases
- SGA boys have higher LH levels during minipuberty, and lower peak testosterone levels post HCG stimulation in childhood

INTRODUCTION

Boys born small for gestational age (SGA) often have undermasculinized genitalia. Little is known about the pubertal development and gonadal function on a longer-term in this specific group of males.

AIMS

To determine the (pubertal) development

	SGA (n=115)	AGA (n=64)	P-value
EMS first presentation	6,5 (4)	7,25 (3,0)	0,311
EMS last assessment	12 (1,0)	12 (1,1)	0,531
GA: <37 weeks <33 weeks	71/115 (61,7%) <i>28/115</i> (24,3%)	18/64 (28,1%) <i>9/64</i> (14,1%)	<0,001
Delayed neuromotor development	20/102 (19,6%)	1/53 (1,9%)	<0,001
GA: gestational age			

Growth

At 2 years of age:

 31/104 SGA boys (29.8%) had incomplete or absent catch-up growth

Growth hormone therapy:

- Only 8 cases
- Mean effect : + 1,5 SD length & weight

At last assessment:

• Lower SD-scores for height and weight in

Hypospadias repair:

 The number of reinterventions was similar in both groups (1 (2); p=0.836)

EMS:

RESULTS

- At last assessment, nearly all boys had an external masculinization score of 12/12
- Residual hypospadias was the most frequent cause of lower scores in both SGA and AGA boys

Endocrine

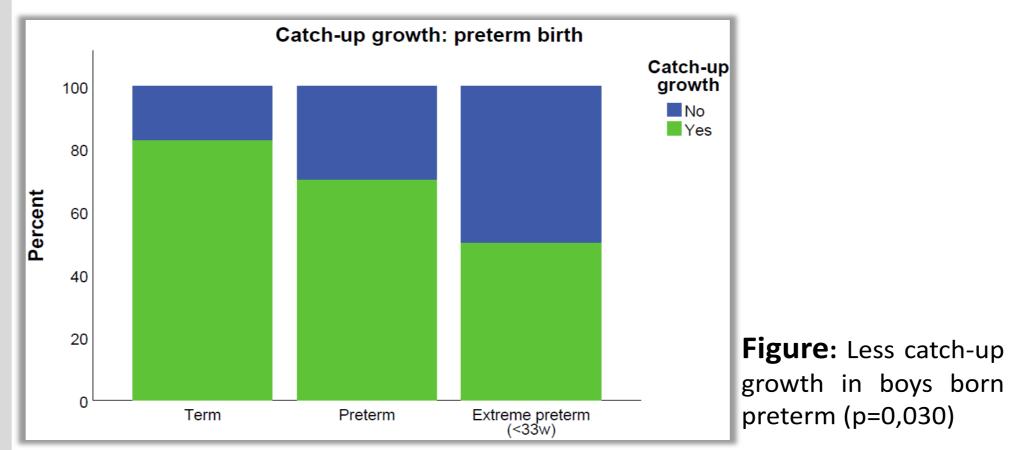
Stimulation of penile growth:

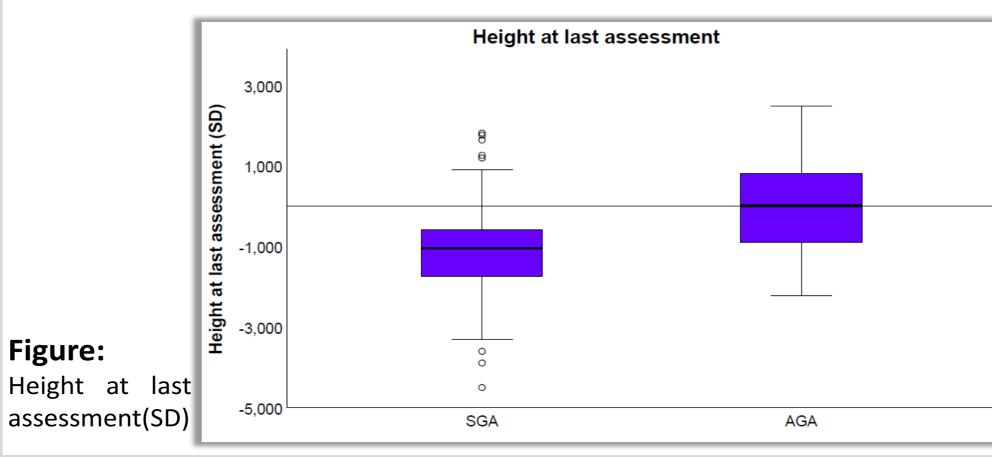
 Postnatal or childhood treatment had a good clinical effect in 38/42 (90.5%) SGA and 14/15 (93.3%) AGA boys
Minipuberty/stimulation test:

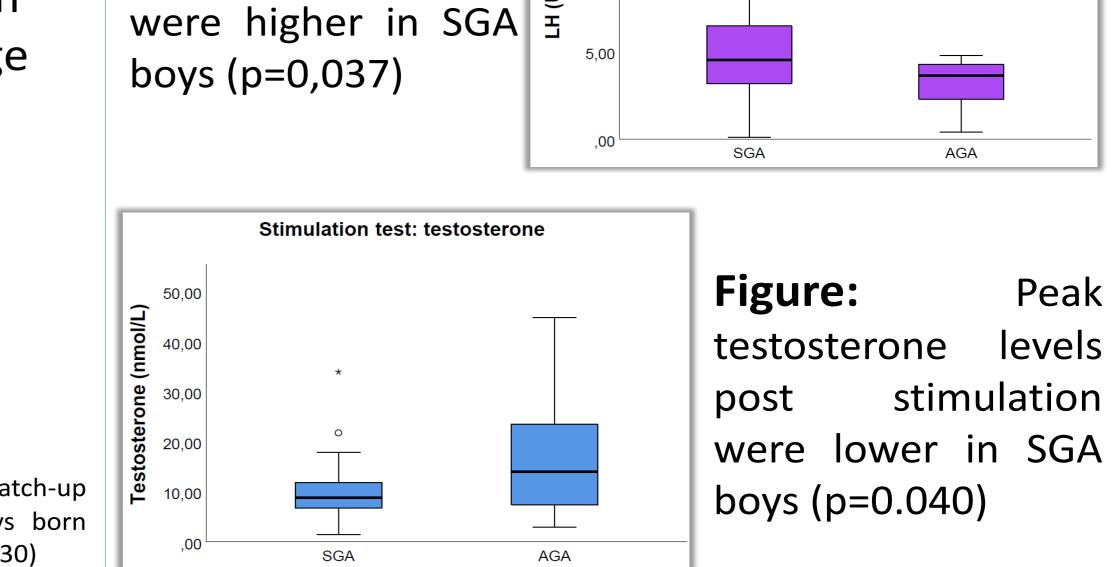
	LH levels: minipuberty	
	15,00	
Figure: LH levels	S °	
during minipuberty		

and long-term urological and endocrine outcome of undermasculinized boys born SGA compared to undervirilized boys born appropriate for gestational age (AGA).

METHODOLOGY


I-DSD Registry:


- Boys with non-specific 46, XY DSD
- Aged \geq 2 years at the time of survey
- Twelve participating centers


Analyses:

Secondary use of routinely obtained clinical data and statistical analysis as appropriate.

SGA boys (both p<0.001) at a median age of 8.0 (SGA) and 7.7 years (AGA)

Puberty:

 Majority of boys: spontaneous onset and uneventful course of puberty

UNIVERSITY

 At the end of puberty: no difference in sex hormone levels was observed between SGA and AGA boys

About one-third of boys with non-specific XY DSD who have SGA show insufficient catch-up growth. The urological outcome and effect of treatments to increase penile size was similar between SGA and AGA cases. Our data suggest a dysfunction of infantile Leydig cells in SGA boys, which does not seem to persist in adult-type Leydig cells. Alternatively, alteration of the hypothalamic-pituitary-gonadal axis during infancy may underlie the hormonal changes found in SGA boys.

Ghent University Hospital, Pediatric Endocrinology & Diabetology (3K12D), Ghent University, BELGIUM – Contact: <u>lloyd.tack@ugent.be</u>, <u>Martine.Cools@ugent.be</u>

