

Great Ormond Street Hospital for Children NHS Foundation Trust

Correlation between Genotype and Phenotype characteristics in Children with Congenital Hyperinsulinism (CHI) in a specialist centre.

Laura Bosch¹, Jasmina Mohammad¹, Antonia Dastamani¹, Clare Gilbert¹, Kate Morgan¹,

Jayne Houghton², Sian Ellard², Sarah Flanagan², Pratik Shah^{1,3}

¹Department of Paediatric Endocrinology, Great Ormond Street Hospital, London

² Genetic Laboratory, Royal Devon & Exeter NHS Foundation Trust, University of Exeter Medical School, Exeter, UK.

³Genetics and Epigenetics in Health and Disease Section, Genetics and Genomics Medicine Program, UCL GOS Institute of Child Health,

London, UK

Introduction and Aim:

Congenital hyperinsulinism (CHI) is the most common cause of hypoglycaemia in early infancy and represents a heterogeneous disorder with respect to clinical presentation, histology and genetics. The aim of our study is to review correlation between genotype and phenotypic characteristics of children with CHI.

Methods:

Retrospective review of CHI patients with positive genetics during the last 8 years in a specialist referral centre.

Results:

Total of 71 children have so far been identified with positive genetic mutation (40 males).

- The median age of presentation with hypoglycaemia was 0-2 days in all mutations except GLUD1 (259.5 days).
- The median birthweight was significantly higher in children with K_{ATP} channel mutations than in GLUD1 and GCK.

GENETICS

- The majority had K_{ATP} channel (ABCC8/KCNJ11) mutation (n=55).
 - 0 15 had compound heterozygous/homozygous K_{ΔTP} channel mutation.
 - o 30 had paternal inherited $K_{\Delta TP}$ mutation.
- o 10 had maternal inherited K_{ATP} mutation
- The rest were 9 HNF4a, 4 PMM2, 2 GLUD1 and 1 GCK mutation respectively.

DIAZOXIDE RESPONSIVENESS

- ο 4 (26.7%) compound heterozygous K_{ΔΤΡ}
- o 7 (23.3%) paternal inherited
- o 7 (70%) maternal inherited K_{ATP} channel mutation.
- o 9 (88.9%) with HNF4a
- o 2 (100%) with *GLUD1*
- o 1 (25%) with *PMM2*

PARTIAL RESPONSE TO DIAZOXIDE

- o 2 (13.3%) compound heterozygous
- o 3 (10%) paternal inherited
- o 1 (10%) with maternal inherited $K_{\Delta TP}$ channel.

OTHER MEDICAL THERAPIES

- o 3 (75%) with *PMM2* mutation had good response to Nifedipine when used in conjunction with Diazoxide.
- o 12 children with K_{ATP} channel mutation were managed on octreotide, sirolimus and Lanreotide.

NATURAL REMISSION

- o 1 compound K_{ATP} (1.56 years)
- o 5 (18.5%) in paternal K_{ATP} (median age 2.19 years)
- o 5 (50%) in maternal K_{ATP} (median age 0.33 years)
- o 1 in *HNF4a* (0.66 years)

PANCREATECTOMY

- 21 patients (29.6%) underwent pancreatectomy:
- o 16 partial pancreatectomy for focal CHI
- o 5 subtotal pancreatectomy for diffuse form of CHI.

Conclusion:

There is no no significant difference noted in age of presentation amongst all except GLUD1 mutation which presents much later in life. Most children with K_{ATP} channel mutation require frequent feeds with multiple medications to manage severe form of CHI. Knowledge of genotype might help to determine pharmacotherapy. The odds of being fully responsive to diazoxide was greater in patients with maternal K_{ATP} channel than in homozygous, compound heterozygous and paternal inherited K_{ATP} channel mutation respectively.

