FACTORS ASSOCIATED WITH DYSLIPIDEMIA IN PATIENTS WITH TYPE 1 DIABETES: A SINGLE-CENTER EXPERIENCE

Sari Krepel Volsky, MD¹, Shlomit Shalitin, MD^{1,2}, Michal Yackobovitch-Gavan, PhD¹, Liora Lazar, MD^{1,2}, Rachel Bello, MD¹, Tal Oron, MD¹, Ariel Tenenbaum, MD^{1,2}, Liat de Vries, MD^{1,2}, Moshe Phillip, MD^{1,2}, Yael Lebenthal, MD^{1,2}

¹The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah-Tikva, Israel & ²Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

All authors have nothing to disclose

BACKGROUND

Youth with type 1 diabetes (T1D) may have altered lipid profiles and evidence of subclinical cardiovascular disease (CVD) within the first decade of diagnosis. Co-occurrence of multiple risk factors for CVD (overweight, hypertension, dyslipidemia and family history of CVD) contributes to the susceptibility of T1D patients to develop atherosclerosis.

Dyslipidemia is a modifiable factor that may contribute to CVD.

AIMS

- To assess factors associated with dyslipidemia in young subjects with T1D
- To describe the progression of multiple cardiovascular disease risk factors

STUDY DESIGN, SUBJECTS & METHODS

Study design: Cross-sectional and longitudinal cohort study

Setting: National Center for Childhood Diabetes, Schneider Children's Medical

Center of Israel

Subjects: 170 young subjects with T1D

Methods:

- Medical chart review
- Structured telephone interview in 2016: to update the family history for type 2 diabetes, CVD, hypertension, dyslipidemia

RESULTS						
CHARACTERISTICS OF STUDY COHORT AT FIRST EVALUATION						
	All n = 170	Males n = 86	Females n = 84	P		
Age (y)	12.1 ± 4.7	12.0 ± 5.1	12.2 ± 4.2	0.854		
Age at diabetes diagnosis	8.1 ± 4.4	8.0 ± 4.7	8.2 ± 4.1	0.735		
Diabetes duration	4.4 ± 4.0	4.4 ± 4.2	4.3 ± 3.8	0.828		
HbA1c (%)	8.4 ± 1.4	8.6 ± 1.4	8.2 ± 1.4	0.064		
Pubertal stage						
Tanner 1	79 (46.5)	47 (54.7)	32 (38.1)			
Tanner 2	11 (6.5)	4 (4.7)	7 (8.3)			
Tanner 3	19 (11.2)	8 (9.3)	11 (13.1)	0.291		
Tanner 4	12 (7.1)	5 (5.8)	7 (8.3)			
Tanner 5	49 (28.8)	22 (25.6)	27 (32.1)			
Weight status						
Overweight	20 (11.8)	4 (4.7)	11 (13.1)	0.004		
Obesity	8 (4.7)	8 (9.3)	4 (4.8)	0.864		
Blood pressure (centiles)						
Pre-hypertension	15 (8.8)	9 (10.5)	6 (7.1)			
Stage 1 hypertension	23 (13.5)	12 (14)	11 (13.1)	0.426		
Stage 2 hypertension	9 (5.3)	6 (7)	3 (3.6)			
Lipid profile (centiles)	n = 144	n=71	n = 73			
LDL-c						
< 75 th	63 (43.8)	27 (38)	36 (49.3)			
75 th -90 th	47 (32.6)	21 (29.6)	26 (35.6)	0.040		
borderline elevated 90-95th	10 (6.9)	7 (8.1)	3 (4.1)	0.049		
elevated > 95 th	24 (16.7)	16 (18.6)	8 (11)			
Triglycerides						
< 75 th	31 (21.5)	12 (16.9)	19 (26)			
75 th -90 th	59 (41)	30 (42.3)	29 (39.7)	0.000		
borderline elevated 90-95 th	16 (11.1)	7 (9.9)	9 (12.3)	0.393		
elevated > 95 th	38 (26.3)	22 (30.9)	16 (21.9)			
HDL-c						
normal level > 10 th	127 (88.2)	62 (87.3)	65 (89%)			
Borderline low 5 th -10 th	9 (6.2)	4 (5.6)	5 (6.8)	0.728		
Low level < 5 th	8 (5.5)	5 (6.9)	3 (4.1)			
Data is presented as mean ± SD or n	umber (percent). BMI	values were converte	ed to sex- and age- s	pecific		

percentiles (CDC 2000). Overweight, ≥85th to <95th percentiles; and obese, ≥95th percentile Blood pressure levels were converted to sex-, age- and height- specific percentiles (NHBPEP 4th report) Pre-HTN systolic and/or diastolic ≥ 90th- 95th, Stage 1 HTN systolic and/or diastolic ≥ 95th < 99th, Stage 2 HTN systolic and/or diastolic ≥99th.

Comparison between sexes were analyzed by independent sample t- or chi-square tests.

CHARACTERISTICS OF STUDY COHORT (LAST VISIT)					
	All	Males	Females	Р	
	n = 170	n = 86	n = 84	P	
Age (y)	26.3 ± 5.7	26.5 ± 6.0	26.0 ± 5.5	0.540	
Diabetes duration (y)	18.2 ± 5.6	18.6 ± 5.5	17.8 ± 5.8	0.375	
Overweight/Obesity	63 (39.9)	32 (40)	31 (39.7)	0.974	
Hypertension	37 (24.3)	26 (35.1)	11 (14.1)	0.003	
Systolic BP > 130 mmHg	28 (18.4)	22 (29.7)	6 (7.7)	<0.001	
Diastolic BP > 80 mmHg	21 (13.8)	16 (21.6)	5 (6.4)	0.007	
Dyslipidemia	113 (66.5)	57 (66.3)	56 (66.7)	0.957	
LDL-c > 100 mg/dL	83 (48.8)	43 (50.0)	40 (47.6)	0.641	
Triglycerides > 150 mg/dL	27 (15.9)	11 (12.7)	16 (19.0)	0.279	
HDL-c < 40 mg/dL (males) and < 50 mg/dL (females)	39 (22.9)	15 (17.4)	24 (28.5)	0.099	

Data is presented as mean ± SD or number (percent)

Weight status in 158 subject (80 males); blood pressure in 152 subjects (74 males)

Comparison between sexes were analyzed by independent sample t - or chi-square tests

CLUSTERING OF CARDIOVASCULAR DISEASE RISK FACTORS

	In 1998	Last visit
Additional CVD risk factors	79.5%	91.3%
 borderline dyslipidemia/dyslipidemia pre-hypertension/hypertension overweight/obesity 	37.5% 27.6% 16.5%	60.8% 24.3% 39.9%
Multiple (≥ 2) CVD risk factors	41.6%	63.4%

54% reported positive family history (first-degree relative) No significant differences between sexes

FACTORS ASSOCIATED WITH DYSLIPIDEMIA						
	ß (SE)	Р	95% CI for ß			
LDL-c						
Diastolic BP 1998	14.3 (5.1)	0.007	4.09, 24.5			
Positive family history of CVD	11.5 (5.6)	0.044	0.34, 22.6			
Triglycerides						
Diastolic BP 1998	23.4 (10.9)	0.035	1.7, 45.1			
Mean Hba1c from 1998-2008	16.1 (5.5)	0.004	5.2, 27.1			
Total cholesterol						
Diastolic BP 1998	17.9 (6.0)	0.004	6.0, 29.7			
Mean Hba1c from 1998-2008	6.5 (3.0)	0.033	0.5, 12.5			
Positive family history of CVD	14.1 (6.5)	0.033	1.1, 27.0			
Sex	11.4 (5.3)	0.036	0.8, 22.0			

Factors associated with 10-year outcomes of lipid profiles were analyzed by stepwise linear regression models. Potential predictors and confounders included in the analyses were sex, ethnicity, Tanner stage, BMI-SDS, systolic and diastolic blood pressure, glycosylated hemoglobin (HbA1c) levels, age at diagnosis and T1D duration, family history of cardio-metabolic diseases.

CONCLUSIONS

Our findings suggest that elevated lipid levels are associated with glycemic control, diastolic blood pressure and positive family history of CVD.

Female sex was associated with higher total cholesterol levels.

Since poor glycemic control and elevated blood pressure aggravate the risk for dyslipidemia, careful surveillance is warranted to prevent and control these modifiable risk factors already from childhood.

The more prominent clustering of CVD risk factors in poorly controlled T1D patients underscores the importance of a more vigorous intervention in this group.

