

ADRENOCORTICAL HORMONE PROFILES DO NOT PREDICT THE MOLECULAR ETIOLOGY IN NON-CAH PRIMARY ADRENAL INSUFFICIENCY

T. SEVEN MENEVSE¹, Y. KENDIR DEMIRKOL², B. GURPINAR TOSUN¹, E. BAYRAMOGLU³, M. YILDIZ⁴, S. ACAR⁵, S. ERISEN KARACA⁶, Z. ORBAK⁷, A. ONDER⁸, E. SOBU⁹, AHMET ANIK¹⁰, Z. ATAY¹¹, F. BUGRUL¹², K. DEMIR¹³, D. DOGAN¹⁴, H. C. EMEKSIZ⁸, H. KIRMIZIBEKMEZ¹⁵, N. OZCAN MURAT¹⁶, A. YAMAN¹⁷, S. TURAN¹, A. BEREKET¹, T. GURAN¹ ¹Marmara University, School of Medicine, Istanbul, Turkey, ²Umraniye Research and Training and Research Hospital, Istanbul, Turkey, ⁴Istanbul, ¹Marmara University of Health Sciences, Istanbul, Turkey, ³Haseki Training and Research Hospital, Istanbul, Turkey, ⁴Istanbul, ¹Marmara University of Health Sciences, Istanbul, Turkey, ⁴Istanbul, ¹Marmara University, ³Haseki Training and Research Hospital, Istanbul, Turkey, ⁴Istanbul, ¹Marmara University, ³Haseki Training, ⁴Istanbul, ⁴Istanbul, ¹Marmara University, ⁴Istanbul, ⁴Istan University, School of Medicine, Istanbul, Turkey, ⁵Behcet Uz Education and Research Hospital, Izmir, Turkey, ⁶Duzce University, School of Medicine, Bolu, Turkey, ⁷Ataturk University, School of Medicine, Erzurum, Turkey, ⁸Medeniyet University, School of Medicine, Istanbul, Turkey, ¹⁰Aydin Adnan Menderes University, School of Medicine, Aydin, Turkey, ¹¹Istanbul Medipol University, School of Medicine, Istanbul, Turkey, ¹²Selcuk University, School of Medicine, Izmir, Turkey, ¹⁴Onsekiz Mart University, School of Medicine, Izmir, Turkey, ¹⁴Onsekiz, Izmir, Turkey, ¹⁴Onsekiz, Izmir, Turkey, ¹⁴Onsekiz, Izmir, Turkey, ¹⁴Onsekiz, Izmir, Canakkale, Turkey, ¹⁵Umraniye Research and Training Hospital, University of Health Sciences, Istanbul, Turkey, ¹⁷Derince Research and Training Hospital, Kocaeli, Turkey, ¹⁷Gungoren Hospital, Istanbul, Turkey

PATIENTS AND DESIGN

- Forty-one children (19 females, median age: 3 months, range: 0-8 years) with non-CAH PAI of unknown etiology from 16 tertiary pediatric endocrinology clinics.
- Patients with CAH, adrenoleukodystrophy, autoimmune adrenal insufficiency or obvious syndromic PAI on clinical and biochemical assessment were excluded.
- Genetic analysis was performed using either targeted gene panel or whole-exome sequencing.
- Plasma adrenal steroids were quantified by liquid chromatography-mass spectrometry and compared to that of controls.

RESULTS

- Molecular diagnosis was found in 11 genes in 29 (70.7%) cases. The range of genetic etiologies found in this cohort were: StAR (n=6; 20%), MC2R (n=6; 20%), NNT (n=3; 10%), NROB1/DAX1 (n=3; 10%), CYP11A1 (n=2; 7%), MRAP (n=2; 7%), SGPL1 (n=2; 7%), ABCD1 (n=1; 3%), AIRE (n=1; 3%), AAAS (n=1; 3%), and HSD3B2 (n=2; 7%).
- In 12 patients whose genetic etiology could not be found by TPS, further diagnosis was not be achieved by WES.

Table 1. Deficiency of adrenocortical steroids according to underlying molecular defect in patients with rare causes of PAI.

Gene (Chromosome locus)	Variant	n	Age of diagnosis	GC deficie
MC2R (18p11.21)	c.455C>A (p.T152K) c.560del (p. V187fs) c. 476C>A (p.T159K)	2 2 2	6.25 years – 4 days 4 days – 3 months 2.48 years – 14 days	6/6
STAR (8p11.23)	c.505G>A (p.E169K) c.470T>C (p.L157P)	3 3	3 days – 5 days – 5 months 1 month – 2 months – 2 months	6/6
NNT (5p12)	exon 12-14 deletion c.259C>T (p.Q87*) c.2507G>A (p.G836D)	1 1 1	1.5 years 6 months 1.48 years	3/3
NR0B1 (Xp21.2)	c.1075C>T (p.Q359*) c.1210C>T (p. Q404*) exon 1-2 deletion	1 1 1	1.5 years 2.5 years 1.5 years	3/3
CYP11A1 (15q24.1)	c.461T>C (p.L154P) c.1351C>T (p.R451W)	1 1	2 days 1.66 years	2/2
MRAP (21q22.11)	c.106 +1del c.106 + 2dupT	1 1	2 days 1.4 years	2/2
SGPL1 (10q22.1)	c.1018C>T (p.R340W) c.518T>A (p.L173Q)	1 1	5 months 4 months	2/2
ABCD1 (Xq28)	c.1772G>T (p.R591L)	1	8 years	1
AIRE (21q22.3)	c.415C>T (p.R139*) / c.260T>C (p.L87P)	1	4.5 years	1
AAAS (12q13.13)	c.1333C>T (p.R478*)	1	4.5 years	1
HSD3B2 (1p12)	c.1003C>T (p.R335*) c.939del (p.F314Sfs*54) / c.745C>T (p.R249*)	1 1	1 month 1 month	2/2

Sex steroid deficiency IUGR / Short MC **Elevated** deficiency TSH stature Gonada Adrena 0/2 0/1 2/2 1/2 2/2 0/0 0/2 1/2 0/6 0*/2 2/2 2/2 0/0 3/3 3/3 1/3 1/0 6/6 3/3 0/0 3/3 0/3 0/1 0/0 0/1 1/1 1/0 0/1 1/1 0/1 0/0 1/1 0/1 0/0 1/1 1/1 1/0 3/3 1/1 0/1 1/1 1/1 0/1 0/0 1/1 0/1 0/0 1/1 2/2 1/0 0/1 1/1 0/1 0/1 0/1 0/0 1/1 0/2 0/0 1/1 1/1 */1 0/1** 1/1 1/1 1/1 2/2 0/1 0/1** 1/1 1/1 0/0 0/0 0/1 1/1 0/1 1/1 1/1 1/1 0/1 */1 1/1 0/0 0/0 0/1 0/1 0/1 2/2 0/1 1/1 1/0 0/1

	Patients (n=29)		Control (n=324)		
(ng/mL)	median	range	median	range	р
Idosterone	0.06	0.007-0.70	0.198	0.002-0.982	0.0002
ortisol	0.891	0.021-77.5	31.08	1.681-248.8	0.0003
HEA-S	4.22	0.308-2757	132.1	5.609-978.1	0.5301
orticosterone	0.057	0.002-5.12	0.926	0.025-19.62	0.0059
1-Deoxycortisol	0.029	0.001-2.03	0.231	0.028-2.094	0.0021
ndrostenedione	0.013	0.001-0.42	0.073	0.001-0.824	0.2815
1- Deoxycorticosterone	0.017	0.001-0.55	0.035	0.002-3.085	0.4476
HEA	0.112	0.01-35.9	0.626	0.012-28.07	0.5164
70H-Pregnenolone	0.105	0.034-46.55	0.506	0.033-9.487	0.0043
70H-Progesterone	0.013	0.002-1.934	0.214	0.001-2.728	0.0852
rogesterone	0.021	0.003-0.174	0.027	0.001-1.684	0.2966
ndrosterone	0.44	0.004-10.01	0.97	0.004-24.56	0.9453
regnenolone	0.126	0.017-51.97	0.421	0.042-10.19	0.0024
ortisone	0.426	0.026-23.09	29.3	1.376-165.9	<0.0001
1-Deoxycortisol	0.031	0.003-0.211	0.086	0.001-0.944	0.022

Table 3. Com patients with s

Age of diagnosis **Consanguinity** of MC deficiency (Sex steroid defi

Karyotype (n)

Legal sex (n)

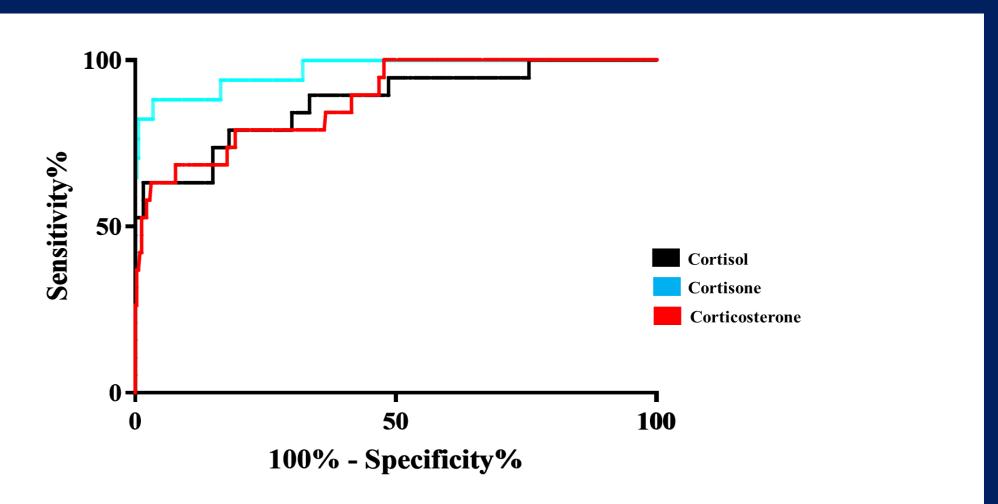
ACTH (N=10-60 Cortisol (µg/dL) Cortisone (ng/m **Corticosterone** 11-Deoxycortico

RESULTS

RESULTS

RESULIS								
parison of clinical and biochemical characteristics of PAI solved or unsolved etiology.								
	PAI solved (n=29)	PAI unsolved (n=12)	р					
s (yrs)	1.3 ± 0.3	5.7 ± 2.1	0.005**					
of parents (n)	23	3	0.001**					
n)	17	7	0.98					
iciency (n)								
Gonadal	9	1	0.12					
Adrenal	28	11	0.5					
46,XX	10	2	0.25					
46,XY	19	10	0.25					
Female	15	2	0.03*					
Male	14	10						
pg/mL)	1132 ± 55.14	992.7 ± 204.8	0.38					
	0.8 ± 0.3	0.4 ± 0.1	0.002**					
nL)	3.8 ± 1.6	24.2 ± 5.1	0.0001***					
(ng/mL)	0.20 ± 0.06	1.38 ± 0.40	<0.0001****					
osterone (ng/mL)	0.02 ± 0.007	0.10 ± 0.05	0.02*					

- molecular etiology is low.


CONTACT INFORMATION

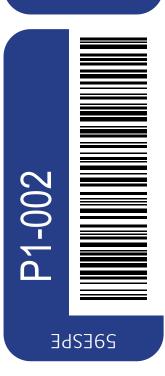
Professor Tulay Guran, MD Marmara University School of Medicine, Department of Pediatric Endocrinology and Diabetes Fevzi Cakmak MhNo 41. 34899 Ustkaynarca/Pendik Istanbul, Turkey

itients with solved molecular etiologies had lower ncentrations of steroids than healthy infants, who has sysiologically low steroids. The difference was most for aldosterone, cortisol, cortisone, nificant rticosterone, pregnenolone, 170H-pregnenolone, 11eoxycortisol, 21-deoxycortisol.

asma cortisol<4 ng/mL, cortisone<11 ng/mL, and rticosterone<0.11 ng/mL had >95% specificity to gregate non-CAH PAI patients compared to control oups (p < 0.0001, area under the ROC curve: 0.96, 0.88, 87, respectively)

ure 1. Specificity and sensitivity of cortisol, cortisone and rticosterone in the diagnosis of PAI

CONLUSION


Adrenocortical hormone profiles determined by LC-MS/MS which demonstrate significantly low glucocorticoids, mineralocorticoids and adrenal androgens, are highly sensitive for the recognition of non-CAH PAI even at early infancy, but the specificity to indicate a definitive

Targeted gene panel sequencing is a first-line approach in the molecular diagnosis of non-CAH PAI with high efficacy.

Nevertheless, lower ACTH, absent parental consanguinity, late-onset of diagnosis and a less severe deficiency profile of steroid hormones decreases the probability of achieving the genetic diagnosis.

> Tel: +90 2166254545 Fax: +90 2164168855 tulayguran@yahoo.com tulay.guran@marmara.edu.tr

