

## Lloyd J. W. Tack<sup>1,\*</sup>, Cécile Brachet<sup>2,\*</sup>, Claudine Heinrichs<sup>2</sup>, Emese Boros<sup>2</sup>, Kathleen De Waele<sup>1</sup>, Saskia van der Straaten<sup>1</sup>, Sara Van Aken<sup>1</sup>, Margarita Craen<sup>1</sup>, Annelies Lemay<sup>3</sup>, Anne Rochtus<sup>4</sup>, Kristina Casteels<sup>4</sup>, Dominique Beckers<sup>5</sup>, Thierry Mouraux<sup>5</sup>, Elfride De Baere<sup>6,7</sup>, Hannah Verdin<sup>6</sup> and Martine Cools<sup>1</sup>

1 Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium; 2 Pediatric Endocrinology Unit, HUDERF, Université Libre de Bruxelles, Brussels, Belgium; 3 Department of pediatrics, AZ Turnhout, Turnhout, Turnhout, Belgium; 5 Department of pediatric endocrinology, Centre Hospitalier Universitaire UCL, Namur, Belgium; 6 Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; 7 Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; \* Joint first author

# **KEY MESSAGES**

Prenatal or obstetric complications in 50% >3/33 (9.1%) had (likely) pathogenic DHX37 variants > More severe phenotype indicating early bilateral testicular regression Little penile growth after childhood IM testosterone

> Testosterone replacement therapy resulted in satisfactory pubertal height gain

## **NTRODUCTION**

The etiology of bilateral testicular regression (BTR) remains unexplained in the majority of cases. Evidence supporting both a vascular and genetic origin have been reported. However, whether different etiologies result in different clinical subgroups is unclear. Furthermore, long-term outcome data of individuals with BTR regarding statural and penile growth are very scarce.

# AIMS

To assess the underlying factors associated with the development of BTR (*i.e.* pregnancy, neonatal and genetic factors) and explore long-term growth and pubertal outcomes

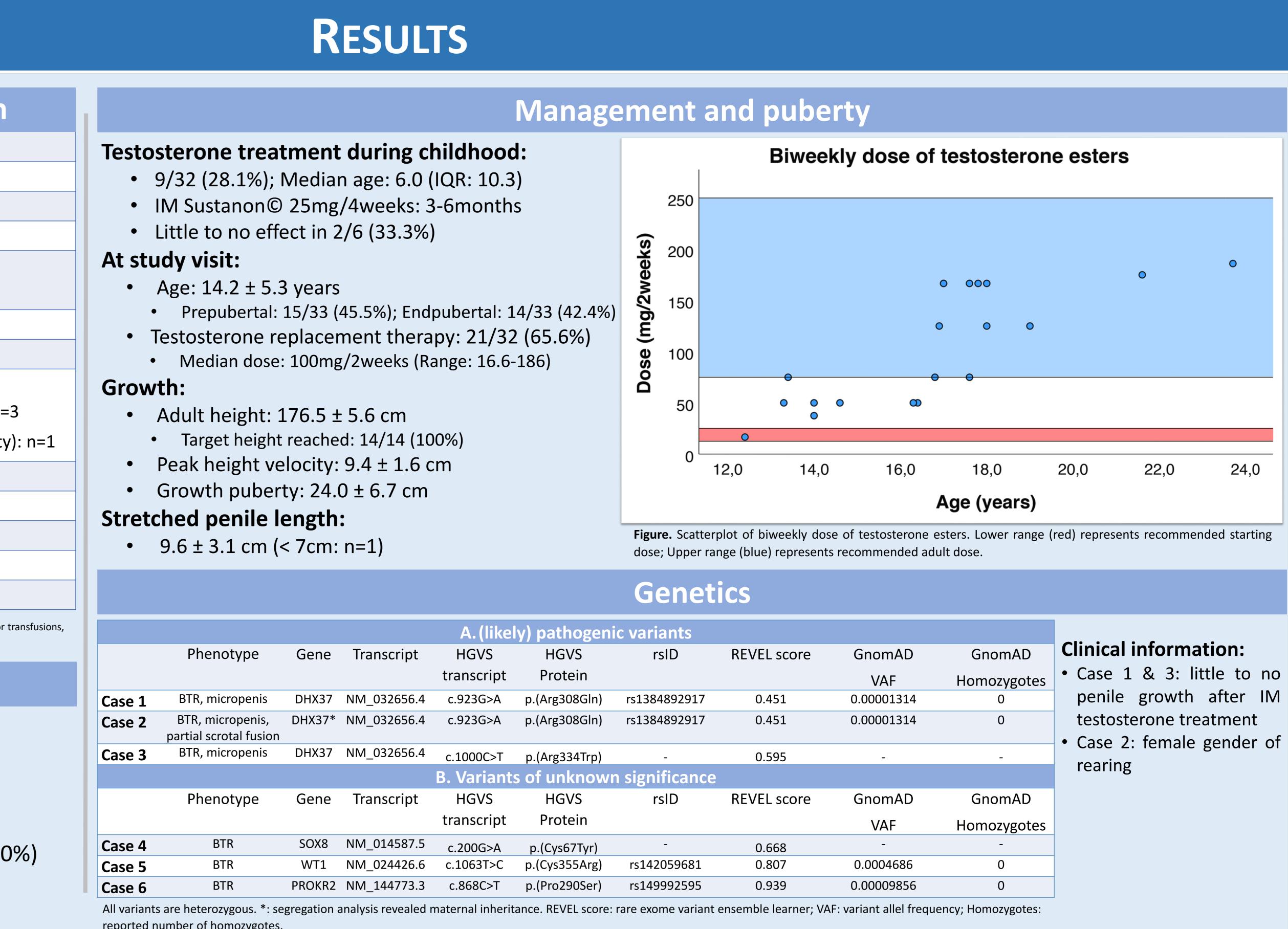
# METHODS

**Participants:** Individuals born with BTR (n=33) recruited in five Belgian centers at an age of 14.2 ± 5.3 years **Cross-sectional study:** Clinical and genital exam **Retrospective data:** Initial presentation and management Genetic analysis: Exome-based testing of genes (n=241) involved in gonadal development and spermatogenesis

# **BILATERAL TESTICULAR REGRESSION** ETIOLOGY AND OUTCOME IN A LARGE BELGIAN SERIES

| Conception, pre                | egnancy and birth          |
|--------------------------------|----------------------------|
| Birth weight (SD)              | -0.39 ± 0.93               |
| Birth length (SD)              | -0.24 ± 0.82               |
| Gestational age                | 40.0 (IQR: 2.0)            |
| Preterm birth                  | 4/30 (13.3%)               |
| Use of ART                     | IVF: 1/31 (3.2%)           |
|                                | ICSI: 1/31 (3.2%)          |
| Consanguinity                  | 2/33 (6.1%)                |
| Pregnancy complications        | 10/22 (45.5%)              |
| Twin pregnancy                 | 4/22 (18.2%)               |
|                                | Monozygotic twin: n=       |
|                                | Triplets (unknown zygosity |
| Pre-eclampsia                  | 1/22 (4.5%)                |
| Gestational diabetes           | 1/22 (4.5%)                |
| Maternal substance abuse       | 1/22 (4.5%)                |
| Other*                         | 3/22 (13.6%)               |
| <b>Obstetric complications</b> | 2/22 (9.1%)                |
|                                |                            |

CMV infection and amniocentesis


## Phenotype at first presentation

## Age at first presentation:

- Median: 1.2 (2.5) years
- Range: 0 14 years

### Ambigous genitalia:

- Micropenis/small phallic structure: 8/32 (25.0%)
- Partial fused scrotum (n=1)
- Female gender of rearing (n=1)
- Pregnancy and obstetric complications were found in over half of cases
- No new genes were identified
- > DHX37 variants were identified in three cases:
  - All had micropenis/small phallic structure at birth
- Pubertal height gain is satisfactory



## CONCLUSIONS

Two cases were treated with (dihydro)testosterone during infancy and showed little to no penile growth

Ghent University Hospital, Pediatric Endocrinology & Diabetology (3K12D), BELGIUM, Contact: Martine.Cools@ugent.be

|      | <b>REVEL</b> score                                              | GnomAD     | GnomAD      |  |
|------|-----------------------------------------------------------------|------------|-------------|--|
|      |                                                                 | VAF        | Homozygotes |  |
| 7    | 0.451                                                           | 0.00001314 | 0           |  |
| 7    | 0.451                                                           | 0.00001314 | 0           |  |
|      | 0.595                                                           | -          | -           |  |
| ce   |                                                                 |            |             |  |
|      | <b>REVEL</b> score                                              | GnomAD     | GnomAD      |  |
|      |                                                                 | VAF        | Homozygotes |  |
|      | 0.668                                                           | -          | -           |  |
|      | 0.807                                                           | 0.0004686  | 0           |  |
|      | 0.939                                                           | 0.00009856 | 0           |  |
| nt e | nt ensemble learner: VAF: variant allel frequency: Homozygotes: |            |             |  |

Pocter "

202 202

Ct0-LG

