

Ovarian AMH production is transiently affected in pubertal and prepubertal girls with acute lymphoblastic leukaemia and non-Hodgkin lymphoma receiving chemotherapy: a prospective, longitudinal study.

Jimena C. Lopez-Dacal⁽¹⁾, Silvina Prada⁽²⁾, Marcela E. Gutiérrez⁽²⁾, Patricia Bedecarrás⁽¹⁾, M. Gabriela Ropelato⁽¹⁾, Andrea Arcari⁽¹⁾, M. Gabriela Ballerini⁽¹⁾, Mirta Gryngarten⁽¹⁾, Marcela Soria⁽²⁾, Lorena Morán⁽²⁾, Cristina Ferraro⁽²⁾, Analía Freire⁽¹⁾, Ignacio Bergadá⁽¹⁾, Guillermo Drelichman⁽²⁾, Luis Aversa⁽²⁾, Rodolfo A. Rey⁽¹⁾ Romina P. Grinspon⁽¹⁾

(1) Centro de Investigaciones Endocrinológicas, "Dr. César Bergadá", (CEDIE) CONICET-FEI, División de Endocrinología. Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina (2) Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

INTRODUCTION

Improvements in the treatment of acute lymphoblastic leukaemia (ALL) and non-Hodgkin lymphoma (NHL) have increased survival, with the consequent concern about the long-term effects that childhood chemotherapy may have on ovarian function.

AMH is an indirect, reliable biomarker of the ovarian reserve, useful for the assessment of cancer therapy-related ovarian damage.

AIM

To evaluate small ovarian follicle status in girls and adolescents with haematologic malignancies during and after treatment (Post Tx)

METHOD

A prospective longitudinal cohort study including girls < 18 years-old with ALL or NHL (2013-2016).

Hormonal evaluation: baseline, every 3 months during chemotherapy, and annually up to 3 years after end of chemotherapy.

Main outcome measure: -Serum **AMH** level (EIA Inmunotech-Beckman-Coulter)

Secondary outcome measures: -Serum **FSH** (IFMA)

Results were analysed according to age or pubertal stage and expressed as medians (range) or percentage, as appropriate

N= 23

Median age at

Median total for

Median followtreatment com Pubertal, n (%) Pre-Pubertal, r

Table 2. Immunophenotype of included patients

Immunop Acute lymphol leukaemia

Common A Pro-B ALL

Pre-B ALL

Non-Hodgkin l

ALL Risk S

- Girls who were pubertal at diagnosis received GnRHa (triptorelin) for 8.4 months (4.8-16).
- The interval between GnRHa suspension and restart of menses was 4.8 months (2.4-7.2).
- All the girls recovered regular menses.
- 8/15 prepubertal girls at diagnosis began puberty during the follow-up.

Table 1. Characteristics of included patients

diagnosis, yr	7.3 (1-15.7)
ollow-up, yr	4.7 (3-5.1)
-up after npletion, yr	2.8 (2.5-3.1)
	8 (34.8)
ר (%)	15 (65.2)

henotype	n	%
olastic	19	82.6
LL	16	84.2
	1	10
	2	15
ymphoma	4	17.4

tratification	n	%			
dard risk	3	15.8			
ium risk	10	52.6			
risk	6	31.6			

4/6 received cranial radiotherapy (1260 cGy)

Table 3. AMH levels (median and range), number of patients with AMH < 3rd centile

	basal	3m	6m	9m	12m	15m	18m	24m	1 <u>st</u> yr postTx	2 nd yr postTx	3 rd yr postTx
AMH pmol/L											
Median (range)	13 (1.2-55)	6.7 (1.2-38)	1.9 (1.2-21)	5,1 (1.2-25.6)	4.8 (1.2-49)	9.0 (1.2-71.2)	14.7 (1.2-40.5)	15.2 (3.0-29.7)	17.7 (3.0-58.4)	14.9 (1.2-46.2)	17.6 (1.2-41.7)
< 3 rd centile n (%)	4 (17.4)	8 (34.8)	14 (63.3)	12 (60.0)	10 (50.0)	5 (26 .3)	5 (27.7)	2 (10.5)	3 (13.0)	3 (13.0)	5 (21.73)

Figure 1. Progression of AMH serum levels during the follow-up

AMH was low (<3rd centile) in 20 patients (86.9%) at some point during treatment. In 4 girls AMH was low since diagnosis, all were prepuberal. In the others, a marked decrease of AMH was observed during first year of treatment (**Figure 1**).

Table 4. FSH levels (median and range) and number of patients with FSH > 97th centile in pubertal girls

	basal	3 m	6m	9m	12m	15m	18m	24m	1 <u>st</u> yr postTx	2 nd yr postTx	3 rd yr postTx
FSH UI/L											
Pubertal, n Median (range)	8 5 (1-9)	8 2.3 (0.8-9.8)	8 5.2 (0.8-16.9)	7 2.3 (0.2-30.9)	8 3.5 (0.4-14.8)	7 4.4 (0.9-11.0)	7 3.8 (1.2-5.5)	10 5.2 (1.2-12.3)	15 4.4 (0.6-15.2)	15 4.3 (2.1-7.9)	16 5.9 (1.5-22.2)
> 97 th centile n (%)	1 (12.5)	1 (12.5)	2 (25)	1 (14.3)	1 (12.5)	1 (12.5)	0	2 (20)	1 (6.7)	0	2 (12.5)

• Increased FSH was seen in 5/16 (31,2%) girls.

RESULTS

Figure 2. AMH serum levels in girls with low AMH at 3rd year Post Tx

4/5 girls who did not recover AMH had basal AMH <25th centile before treatment (Figure 2) and a diagnosis of high-risk ALL or NHL, receiving more aggressive chemotherapy.

15/20 (75%) patients recovered normal serum AMH. (Table 3)

CONCLUSIONS

These preliminary results suggest that most girls with ALL or NHL suffered a transient dysfunction of the ovarian follicles during chemotherapy, with long term recovery in most of them. Most of the girls with persistently low AMH had received more aggressive chemotherapy.

P1-144 29ESPE