Diagnostic challenges of Vitamin D-Dependent Rickets Type 1a (VDDR1A) caused by CYP27B1 mutation in resource limited countries: a case series from three families

INTRODUCTION

- □ Vitamin D dependent rickets type 1A (VDDR1A) is an autosomal recessive condition due to inactivating mutation in **CYP27B1** which inhibits 1-alphahydroxylase enzyme leading to defective conversion of 25-OH vitamin D to 1,25- $(OH)_2$ vitamin D. (Figure-1)
- □ Clinical and bone profile of VDDR1A mimics vitamin D deficient and others vitamin D dependent rickets. However, normal or raised 25-OH vitamin D in presence of low $1,25-(OH)_2$ vitamin D is diagnostic of VDDR1A.
- □ In developing countries like Pakistan diagnosing VDDR1A is a challenge due to lack of free availability of $1,25-(OH)_2D$ level and genetic testing.

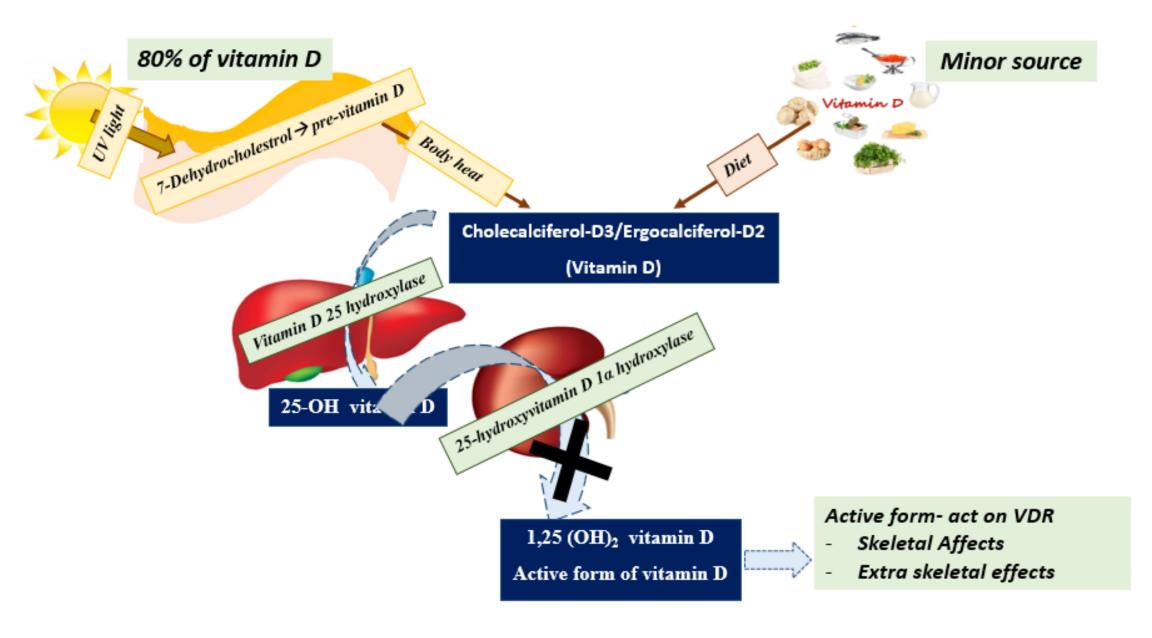


Figure-1 Pathophysiology Of Vitamin D dependent rickets type 1A

AIM

□ To determine the clinical profile and diagnosis challenges and in management of vitamin D dependent rickets type 1A in developing countries.

Sommayya Aftab^{1,2}, Tahir Shaeen¹, Muhammad Nadeem Anjum³, Ahmed Imran⁴, Anjum Saeed³, Abid Quraishi⁴, Huma Arshad Cheema³ ¹Department of Paediatric Endocrinology and Diabetes, The Children's Hospital & The Institute of Child Health, Lahore. ² Consultant Paediatric Endocrinologist and Diabetologist, Hameed Latif Hospital, Lahore. ³ Department of Paediatric Gastroenterology and hepatology, The Children's Hospital & The Institute of Child Health, Lahore. ⁴ Department of Radiology, The Children's Hospital & The Institute of Child Health, Lahore.

RESULTS

- > Total 4 cases (all male) from three different families were identified.
- > All were carrying homozygous **CYP27B1** mutation (c.1319_1325dup p.(Phe443Profs*24)).
- Age of start of symptoms is in late infancy (9-12 months).
- > Mean age of presentation to tertiary care is 2.8 (1.5-3.9) years.
- > All four cases presented with progressive bony deformities and failure to thrive. Three had repeated diarrhoeas and 1 had fracture.
- > All born to consanguineous parents with case 1 having history of two sibling deaths due to rickets and repeated diarrhoeas. Case 3 & 4 are siblings.
- > All four cases were treated as rickets hypophosphatemic before presentation.

METHODS

□ Retrospective review of all children with vitamin D dependent rickets type 1A due to CYP27B1 mutation over last one year in a tertiary care hospital.

Table-1. Clinical	and bon	ne profile at	t presentat	tion	
Anthropometry & Bone profile	Case 1	Case 2	Case 3	Case 4	
Height (cm)	76	80	73.5	73	
Weight (kg)	9	10	10	8.2	
HV (cm/y)	2	0.1	2	3	
BMI (kg/m2)	15.58	15.62	18.51	15.39	 Activated vitamin (150 ng/kg/day) Calcitriol (case 1&2) Alfacalcidol (case Calcium Supplementation
Calcium (8.6-10.2)mg/dl	8.9	7.9	8.8	8.1	
Phosphate (4 -7)mg/dl	2.2	2	1.5	1.6	
Magnesium (1.5-2.5)mg/dl	2	2.2	2.5	2.1	
Alkaline PO4 (IU/I)	3723	996	868	1148	
25-OH vitamin D (ng/ml)	122	58.9	39.8	41.7	
PTH (pg/ml)	771	80.9	110	213	
Urine Ca : Cr	0.04	0.01	0.07	0.07	
FeP (%)	17	23	23	24	
TRP (%)	83	77	77	76	

Failure to thrive with mean HV 1.7(0.1-3) cm/y and bone profile showing low-normal calcium, hypophosphatemia, phosphaturia, raised alkaline phosphatase and PTH)

Growing with mean HV 9.8(8.7-12) cm/y and having normal calcium, normal phosphate, reducing trend of alkaline phosphatase and PTH with normal urine calcium to creatinine ratio)

CONCLUSION

 \Box We should have a high index of suspicion of VDDR1A in children with rickets not responding to cholecalciferol in resource limited countries.

Calcitriol seems to be more efficient than alfacalcidol in term of healing of VDDR1A rickets.

able-2. Clinical and bone profile on 6-month follow-up							
nthropometry & Bone profile	Case 1	Ćase 2	Case 3	Case 4			
eight (cm)	81	86	77	77			
eight (kg)	11	11.8	12	9.4			
V (cm/y)	12	10.9	7.7	8.7			
VII (kg/m2)	16.77	15.95	20.24	15.85			
a lcium 6-10.2)mg/dl	9.3	10.6	9.3	9.2			
-7)mg/dl	4.1	4.3	3.5	3.4			
kaline PO4 /I)	761	171	868	341			
5-OH vitamin (ng/ml)	49	47	58	54			
FH (pg/ml)	275	40	110	114			
rine Ca : Cr	0.04	0.2	0.08	0.07			

REFERENCES

Fukumoto S, Ozono K, Michigami T, Minagawa M, Okazaki R, Sugimoto T, Takeuchi Y, Matsumoto T. Pathogenesis and diagnostic criteria for rickets and osteomalacia - proposal by an expert panel supported by Ministry of Health, Labour and Welfare, Japan, The Japanese Society for Bone and Mineral Research and The Japan Endocrine Society. Endocr J. 2015;62(8):665-71

Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1alpha-hydroxylase gene mutations in patients with 1alpha-hydroxylase deficiency. J Clin Endocrinol Metab 2007; 92:3177.

Edouard T, Alos N, Chabot G, et al. Short- and long-term outcome of patients with pseudovitamin D deficiency rickets treated with calcitriol. J Clin Endocrinol Metab 2011; 96:82.

So Bo

