INTRODUCTION

- Family history is observed in approximately 10% of the cases with type 1 diabetes mellitus (T1DM).
- The most important gene that determines susceptibility is the human leukocyte antigen complex (HLA) on chromosome 6.
- In HLA genes, specific combinations of alleles at DQ3, DQ4, DQ8, DQ1, DQA1 and DQB1 locus either predispose or protective for T1DM.

AIM

- to investigate the molecular genetic etiology by whole exome sequence (WES) analysis in cases with familial T1DM who had no HLA haplotype predisposition or incomplete predisposition.

METHOD

- Patients had at least one first degree relatives with T1DM were included.
- In the first step, HLA DRB1, DQA1 and DQB1 loci were investigated with polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) method.
- In the second step, the presence of variants that could explain the clinic in cases where both tissue types were negative in HLA typing (DQ2 (-) / DQ8 (-)) and only one of the HLA types was found positive (DQ2 (+) / DQ8 (-), and DQ2 (-) / DQ8 (+)) was investigated by WES analysis.

RESULTS

- Four cases (13.3%) had consanguineous marriage between their parents out of 30 patients (female / male: 17:13).
- Mean age: 14.96 years.
- Diabetes duration: 7.56±3.84 years.
- As a result of filtering all exome sequence analysis data of 2 cases with DQ2 (-) and DQ8 (-), 7 cases with DQ2 (+) and DQ8 (-), and 1 case with DQ2 (-) and DQ8 (+), 7 different variants in 7 different genes were detected in 5 cases.
- The probability of the detected variants were determined according to the “American College of Medical Genetics and Genomics (ACMG)” criteria.
- These 7 variants detected were evaluated as high-score VUS (Variants of unknown/uncertain significance).

<table>
<thead>
<tr>
<th>Cases</th>
<th>Gene</th>
<th>HGVS-Code</th>
<th>HGVS-Protein (amino acid exchange)</th>
<th>Zygosity</th>
<th>Mutation type</th>
<th>Classification</th>
<th>Pathology associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>GATA</td>
<td>c.278G>A</td>
<td>p.Asn93Thr</td>
<td>Heterozygous</td>
<td>Missense</td>
<td>VUS</td>
<td>Autoimmune diseases</td>
</tr>
<tr>
<td>Case 2</td>
<td>KCNK11</td>
<td>c.1720G>A</td>
<td>p.Glu574Asp</td>
<td>Heterozygous</td>
<td>Synonymous</td>
<td>VUS</td>
<td>IDDM, monogenic diabetes</td>
</tr>
<tr>
<td>Case 3</td>
<td>CASP10</td>
<td>c.9292+290MT</td>
<td>Heterozygous</td>
<td>Intronic</td>
<td>VUS</td>
<td>T2DM, monogenic diabetes</td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>BLVRA</td>
<td>c.1660±1T</td>
<td>p.Glu55*</td>
<td>Heterozygous</td>
<td>Nonsense</td>
<td>VUS</td>
<td>Hypothyroidism, T2DM</td>
</tr>
<tr>
<td>Case 5</td>
<td>POLG</td>
<td>c.3151G>C</td>
<td>p.Glu1051R</td>
<td>Heterozygous</td>
<td>Missense</td>
<td>VUS</td>
<td>Progressed external ophthalmoplegia, mitochondrial DNA depletion syndrome (MERRF, ALPERS), mitochondrial recessive ataxia syndrome, Alpers-Huttenlocher Syndrome, Ataxia Syllomysitis, myocytic epilepsy, myopathy sensory ataxia (MMSA), Childhood myocerebrohepatopathy syndrome (MCHS), T2DM</td>
</tr>
<tr>
<td>Case 5</td>
<td>AKT2</td>
<td>c.709-3C>G</td>
<td>Splice area</td>
<td>Heterozygous</td>
<td>VUS (Learning Pathogenic)</td>
<td>NHSP/PLACE, Mitochondriopathy, Mitochondrial</td>
<td>T2DM</td>
</tr>
<tr>
<td>Case 5</td>
<td>FBNI</td>
<td>c.37C>G</td>
<td>L11Q, L11R</td>
<td>Heterozygous</td>
<td>Missense</td>
<td>VUS</td>
<td>Marfan Syndrome, Stiff Skin Syndrome, Marfan Lymphoproliferative Syndrome, Polysyndactyly Type 2, Arthrogryposis Well-Marchesani Syndrome, T1DM, T2DM</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- In a previously studied T1DM has been reported in monozygotic twins with POLG mutation.
- In another study, POLG mutation was shown to be responsible for diabetic nephropathy in patients with T1DM.
- In this study, 7 different variants in 7 different genes were detected in 5 patients by whole-exome sequence analysis in familial T1DM patients with no or weak HLA tissue type susceptibility.
- We thought that the heterozygous c.3151G>C mutation detected in the POLG gene in our case was associated with the current T1DM phenotype.

REFERENCES

ACKNOWLEDGEMENTS

None

CONTACT INFORMATION

Ferda Evin, M.D
Ege University School of Medicine, Department of Pediatric Endocrinology, Izmir, TURKEY, 35100
ferdaevin88@gmail.com