

HYPERINSULINEMIC HYPOGLYCEMIA IN A CHILD WITH PEROXISOMAL BIOGENESIS DISORDER DUE TO A NOVEL PEX1 MUTATION

N. LOHIYA¹, A. MORRIS¹, M. DIDI-¹ and S SENNIAPPAN ¹

1. Department of Endocrinology, Alder Hey Children Hospital, Liverpool, United Kingdom

BACKGROUND

- Peroxisomal biogenesis disorders are autosomal recessive disorders characterized by defective biosynthesis, assembly and function
- The primary cause of these disorders is due to mutations in PEX gene.
- PBDs are classified into two types: PBD- Zellweger spectrum disorder (PBD-ZSD) and rhizomelic chondrodysplasia puncatata type 1
- Hypoglycaemia is not reported in peroxisomal disorders. Although peroxisomes play a role in very long chain fatty acid oxidation, the main pathway of fatty acid oxidation (FAO) occurs in mitochondria.
- Hypoglycaemia occurring in a child with PBD needs thorough work-up to find the etiology

CASE

- A 7 month old boy was referred with the complaints of irritability and excessive cry.
- He was known to have multiple problems in the form of bilateral sensorineural hearing loss, global developmental delay, hypotonia, visual impairment and gastroesophageal reflux.
- No family history of diabetes mellitus or hypoglycaemia was reported.
- He was born at 41 weeks of gestation with a birth weight of 3.7 kg (0.48 SDS).
- On examination hepatomegaly, dysmorphic features including asymmetry of nasal cleft, leg crease, sacral dimple, metatarusus adductus and right undescended testis were noted.
- Investigations revealed deranged liver function [AST- 1576 lu/L (12-41), ALT- 918 iu/L (80-36), GGT- 163 lu/L (0-50), Total Protein- 67 g/L (67-92), Albumin- 40 g/L (38-58), PT-15.3 sec (9.1-11.8), INR- 1.48, APTT- 27.6 sec (22.8-34.7)], normal serum electrolytes and blood gas analysis.
- The child started to have repeated episodes of Hypoglycaemia requiring high glucose infusion rate (GIR) of 10.6 mg/kg/min.
- Critical sample during hypoglycaemic episode revealed a blood glucose of 2.5 mmol/L (>2.6 mmol/L), Insulin of 18 mIU/mL C-peptide of 116 pmol/L and beta hydroxyl butyrate (<100 µmol/L) and free fatty acid undetectable (FFA) (<275 µmol/L) were undetectable suggestive of HH.
- The child was started on intravenous glucagon and high concentration intravenous dextrose (GIR 10.6 mg/kg/min) to which he responded well. Echocardiogram showed a structurally and functionally normal heart study.
- The cortisol was 364 nmol/L during hypoglycaemia. Standard short synacthen test revealed a baseline cortisol of 147nmol/L and a suboptimal peak of 214nmol/L suggesting adrenal insufficiency.

CASE

- The constellation of features of sensorineural hearing loss, hepatomegaly, visual impairment, hypotonia, developmental delay, liver dysfunction and adrenal insufficiency made peroxisomal disorders as a likely diagnosis.
- The ratio of very long chain fatty acid C24/C22 was 1.76µmol/L (0.44-0.97) and Very Long chain Fatty acid C26/C22 ratio was 0.339µmol/L (0.005-0.03) indicative of PBD-ZWS or isolated beta oxidation of fatty acid defect.
- Urinary bile analysis showing elevated taurine 548µMl/mMCr (9-123) with notable presence of taurotrihydrocholestanoate, taurotetrahydrocholestanoate with much increased ratio of taurotetrahydrocholestanoate/taurotrihydrocholestanoate which was suggestive of PBD-ZWS.
- The child was commenced on diazoxide (3 mcg/kg/day) and chlorothiazide (6 mg/kg/day). Dose of diazoxide was increased to maintain blood glucose >3.5mmol/L to a maximum of 15 mg/kg/day and GIR was tapered and intravenous fluids were discontinued.
- Gradually the blood glucose improved but his oral intake was sub-optimal hence nasogastric feeds were commenced and subsequently a percutaneous endoscopic gastrostomy was inserted.
- The child tolerated diazoxide well without any complications. Diazoxide was slowly weaned and stopped after total treatment duration of 40 days.
- Genetic analysis for PBD-ZWS showed two heterozygous mutations in PEX1 [c.2097dupTp.(lle700TyrfsTer42) and c.1838G>A p.(Cys613Tyr)] with the first one known to be a common pathogenic variant to cause PBDs in both compound heterozygous and homozygous states and the later was proposed to be a pathogenic variant.
- The cause of hyperinsulinism was not identified on genetic analysis of known HH genes (ABCC8, KCNJ11, and HNF4A1).

CONCLUSION

- Hypoglycaemia in a child with peroxisomal disorder needs a thorough approach.
- Although rare, HH should be considered.
- Treatment with diazoxide could help in the management of hypoglycaemia

ACKNOWLEDGEMENTS

The work was done during ESPE fellowship at Alder Hey Children's Hospital sponsored by Merck.

CONTACT INFORMATION

Dr Nikhil Lohiya- drnnlohiya@gmail.com

Dr Senthil Senniappan- senthil.senniappan@alderhey.nhs.uk

