

INTRODUCTION

From time to time pediatric endocrinologists may be confronted with paradoxical constellations. Here, we report on an 13-yearold-boy whose treatment of ketoacidosis at manifestation type-1 diabetes resulted in hypokalemic alkalosis.

He had polyuria and polydipsia for 2 weeks before presentation. Three got increasingly exhausted and developed recurrent vomiting.

At presentation his weight was 41,4 kg (P 25-50) and his height was 154 cm (P 25-50).

Initial labs were HbA1c 10.2%, glucose 530 mg / dl, pH 7.15, base excess - 21.1 mmol / l, bicarbonate 9.8 mmol / I, Na 131 mmol / I, K 2.4 mmol /I.

Type-1 diabetes was diagnosed and the boy treated with i.v. insulin, fluid and electrolyte substitution.

However, despite a high potassium substitution of up to 6 mmol / kg body weight / 24h, therapyresistant hypokalemia with hypokalemic metabolic alkalosis persisted after regression of ketoacidosis: pH 7.48, base excess 10.8 mmol / I, bicarbonate 33.7 mmol / I, Na 136 mmol / I, K 2.7 mmol / I.

Further lab diagnostics showed a plasma renin of >300ng/l and a serum aldosterone of 141.1 ng/dl.

RESULTS

The constellation of therapy-resistant hypokalemic alkalosis and secondary hyperaldosteronism with normal blood pressures made us think of the additional presence of Bartter's syndrome.

Bartter's syndrome is a clinically and genetically heterogeneous renal salt loss disorder with hypokalemic metabolic alkalosis and secondary hyperaldosteronism.

Bartter`s syndrome type 3 is caused by pathogenic changes in the CLCNKB gene and is inherited as an autosomal recessive trait.

Analysis by next generation sequencing showed a complete deletion of the CLCNKB gene in the homozygous state, which was confirmed by multiplex ligation-dependent probe amplification analysis.

DIABETIC KETOACIDOSIS RESULTING IN TREATMENT-**RESISTANT HYPOKALEMIC ALKALOSIS**

H.Rakicioglu, C.Kamrath, P.Karatsiolis, and S. A. Wudy Justus-Liebig-University, Centre of Child and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetology, Giessen, Germany

CASE

CONCLUSIONS

To the best of our knowledge, we describe the first case of persisting hypokalaemia and alkalosis after regression of diabetic ketoacidosis due to a previously undiagnosed Bartter`s syndrome.

During the course of long-term therapy with spironolactone and potassium substitution, the potassium levels normalized.

davs	before	presentation.	he
duyo		procontation,	

	рН	Bicarbonate (mMol/l)	BE (mMol/l)	K (mMol/l)
Hour 0	7,15	9,8	- 21,1	2,4
Hour 1	7,11	9,8	- 20,8	2,6
Hour 3	7,14	9,4	- 21,8	2,6
Hour 5	7,15	9,6	- 21,7	2,6
Hour 12	7,29	15,9	- 11,0	2,6
Hour 24	7,43	22,7	- 1,2	2,6
Hour 48	7,49	34,3	11	2,9
Hour 72	7,53	33,2	9,5	3,2
Hour 96	7,48	29,9	7,9	3,5

NGS-Analysis was performed by Bioscientia Institute for medical Diagnostic, Ingelheim Germany

Hande.Rakicioglu@paediat.med.uni-giessen.de

ACKNOWLEDGEMENTS

CONTACT INFORMATION

