

Longitudinal association of the anti-inflammatory serum marker GDF-15 with serum IgA and IgG in apparently healthy children

<u>G. Carreras-Badosa¹, A. Gómez-Vilarrubla¹, B. Mas-Parés¹, E. Puerto-Carranza², F. Díaz-Roldán², E. Riera-Pérez³, F. de Zegher⁴, L. Ibañez⁵, J. Bassols¹, A. López-Bermejo¹</u>

Pediatrics, Girona Biomedical Research Institute, Girona, Spain; ² Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain;³ Pediatrics, Salut Empordà Foundation, Figueres, Spain;⁴ Department of Development & Regeneration, University of Leuven, Belgium;⁵ Endocrinology, Sant Joan de Déu Children's Hospital Pediatric Institute, University of Barcelona, Barcelona, Spain.

Introduction

Both the innate and adaptive immune responses are deregulated in individuals with obesity and are a key driver of its associated metabolic alterations. Although the anti-inflammatory growth differentiation factor 15 (GDF-15) is a candidate protein against obesity, its mechanisms regulating the immune responses are not fully understood.

Methods

We examined whether serum GDF-15 was related to serum levels of immunoglobulins in a cohort of healthy children recruited at the primary health care centers of Girona, in Northeastern Spain (204 Caucasian children, 101 girls and 103 boys). Children were assessed longitudinally at baseline (8.5 ± 1.8 years) and follow-up $(13.0 \pm 1.9 \text{ years}, \text{ Table 1})$. At baseline, children were classified according to BMI (above/below median BMI z-score =0.62 \pm 1.4) or renal fat (above /below median).

Results

GDF-15 positively associated with IgA and IgG levels and IgA*IgG product in apparently healthy children at both baseline follow-up (Figure 1). The associations were more pronounce heavier children (those with BMI-SDS above the median) as we in children with higher accumulation of renal fat (those with rena to-height ratio above the median), in whom they remained signif after correcting for possible confounding variables (Table 2). Se GDF-15 levels accounted for up to 16% of the variance of IgG le and 14% of the variance of IgA*IgG product at follow-up.

Table

studie

Baseli Fema Overv Age (y Weig Weigł Heigh Heigh BMI (BMI-S Renal Renal lgA (n lgG (n lgA*l GDF-1 Follov Overv Age (Weig Weigl Heigh Heigh BMI (BMI-S Renal Renal lgA (n lgG (n lgA*lg

e	1.	Descriptive	analysis	of	the			
ed parameters in all children.								

cu purumeters in un or	
ine	N=204
le/male sex (n)	101/103
weight (n)	62
years)	8.5 ± 1.8
ht (kg)	37.8 ± 14.7
ht-SDS (z-score)	0.82 ± 1.45
nt (cm)	135.4 ± 12.9
nt-SDS (z-score)	0.69 ± 1.13
kg/m2)	19.9 ± 4.7
SDS (z-score)	0.62 ± 1.40
fat (cm)	0.20 ± 0.04
fat-to-height ratio (cm/m)	0.15 ± 0.03
ng/dL)	108 ± 52
ng/dL)	982 ± 220
gG product x10³	110 ± 71
15 (pg/mL)	99.3 ± 28.0
w-up	
weight (n)	61
years)	13.0 ± 1.9
ht (kg)	59.1 ± 19.9
ht-SDS (z-score)	0.84 ± 1.51
nt (cm)	158.6 ± 12.1
nt-SDS (z-score)	0.42 ± 1.03
kg/m2)	23.2 ± 6.0
SDS (z-score)	0.76 ± 1.58
fat (cm)	0.12 ± 0.04
fat-to-height ratio (cm/m)	0.07 ± 0.02
ng/dL)	135 ± 59
ng/dL)	1006 ± 223
gG product x10 ³	140 ± 82

nd the	Table 2. Multivariateup (age 13 years of							•		ι	•	ars old) ar	nd foll
ne and		Baseline					Follow-up						
ced in		lgA		lgG		IgA*IgG product		IgA		lgG		IgA*IgG prod	
well as		β	Р	β	Р	β	Р	β	Р	β	Р	β	
nal fat-	Baseline GDF-15	0.192	0.03	0.283	0.003	0.259	0.003	0.241	0.013	0.404	< 0.001	0.333	< 0.
	Sex (female/male)	-0.189	0.03	-0.296	0.002	-0.261	0.003	-0.162	ns	-0.244	0.009	-0.214	0.01
nificant	Baseline age	0.396	0.001	0.207	ns	0.395	< 0.001	0.186	ns	0.044	ns	0.164	ns
Serum	Baseline BMI	0.019	ns	-0.026	ns	0.006	ns	0.163	ns	-0.001	ns	0.129	ns
	Model R ²	0.235		0.189 0.302		302	0.178		0.199		0.229		
levels	GDF-15 R ^{2*}	0.0	28	0.0	97	0.	058	0.0	51	0.1	164	0.	144

*Step-wise method.

< 0.001

0.019

IaB. de Girona Dr. Josep Trueta Hospital Universitari de Girona Doctor Josep Trueta **** Ina manera de hacer Euro

In obesity, both B cells and T cells are recruited into the adipose tissue and inflammatory response promote an (increased IgA and IgG, among others). GDF-15 secreted by the adipose tissue could regulate this adaptive immune response (Figure 2).

SP SP

