A selective non-peptide somatostatin receptor 5 (SST5) agonist effectively decreases insulin secretion in the K_{ATP} HI mouse model and human HI islets

Christine A. Juliana,1 Jinghua Chai,1 Pablo Arroyo,1 Elizabeth Rico-Bautista,2 Stephen F. Betz,2 Diva D. De Leon1,3

1 Division of Endocrinology and Diabetes, Congenital Hyperinsulinism Center, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104; 2 Crinetics Pharmaceuticals, Inc., San Diego, CA 92121; 3 Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.

Introduction

• Congenital hyperinsulinism (HI) is the most common cause of persistent hypoglycemia in infants and children.
• Inactivating mutations of β-cell K_{ATP} channels cause the most common and severe form of HI, known as K_{ATP}-HI.
• Children with K_{ATP}-HI are typically unresponsive to diazoxide, the only drug with regulatory approval for HI.
• Octreotide, an SST-selective peptide agonist that inhibits insulin secretion, is used off label as second line therapy, but poor efficacy and SST-mediated side effects limit its use in infants.
• Crinetics has ongoing discovery and development efforts aimed at finding a compound to treat HI. They have identified potent and selective nonpeptide SST agonists with sub-nanomolar EC₅₀s in cell-based assays of receptor activation.
• We characterized the ability of the selective SST5 nonpeptide agonist CRN02481 to suppress insulin secretion and prevent fasting hypoglycemia in the Sur²- HI mouse model of K_{ATP}-HI, and to suppress insulin secretion from healthy human islets and from HI islets.

Methods

• In vitro studies: Sur²- and Sur¹- HI mouse islets were isolated and cultured for 72 hrs. For static incubations, islets were treated with CRN02481 (100 nM) or vehicle and stimulated with glucose or a physiological amino acids mixture (AAMS) for 1.5 hours. Supernatant was collected to measure insulin by homogenous Time Resolved Fluorescence Immunoassay (TRF). For intracellular Ca²⁺ measurements, islets were pre-incubated with the Fura 2 fluorescent probe, treated with CRN02481 (500 nM) or vehicle and then exposed to increasing concentrations of glucose or AAMS. Intracellular Ca²⁺ was calculated as the ratio of excitation of Fura 2 at 334 and 390 nm. Normal human islets (Prodo Labs, CA) were loaded in a perfusion system and treated with 3, 6, and 16.7 mM glucose, and 16.7 mM glucose + 100 μM tolbutamide [•] increasing concentrations of CRN02481. Insulin was quantified by ELISA (Mercodia, Uppsala, Sweden).
• In vivo studies: Sur²- and Sur¹- HI mice received CRN02481 (30 mg/kg/day) or PBS by gavage (n=7/group) while fasting. Glucose tolerance tests (GTT) were performed after an overnight fast (16 hrs) and with 2 g/kg dextrose by intraperitoneal injection.

Results

CRN02481 increases plasma glucose and decreases insulin secretion in both Sur²- and Sur¹- mice

CRN02481 decreases insulin secretion in both normal and HI human pancreatic islets

Conclusions

• The somatostatin receptor agonist CRN02481 (SST5 selective) effectively decreases insulin secretion in the Sur²- K_{ATP}-HI mouse model and in both normal and HI human islets.
• Selective targeting of specific SST5 somatostatin receptors by non-peptide agonists is a viable option for the development of HI therapeutics.

Acknowledgements:

This work is supported by a research grant from Crinetics Pharmaceuticals to DDL.

Figure 1: Treatment with SST5 agonists inhibits abnormal insulin secretion from HI islets. The most common mutations in HI are highlighted in red. GAK, K_{ATP} channel; SUR1, SUR2A.

Figure 2: CRN02481 inhibits fuel-stimulated insulin secretion and calcium flux in mouse islets

Figure 3: Perifusion of primary isolated islets to assess glucose/insulin release in both Sur²- and Sur¹- islets stimulated with glucose (10 – 25 mM) or K_{Cl} (30 mM or 60 mM) or Sur¹- islets stimulated with AAMS (a = 1.2 mM) and (b) (50 μM). (a) A, B: AUCs for CRN02481+vehicle control, * p<0.05, ** p<0.01,

Figure 4: Intracellular Ca²⁺ measurement of primary isolated perifused islets in Sur²- and Sur¹- islets treated with CRN02481 (30 mg/kg/day) or PBS by gavage (n=7/group) while fasting. Glucose tolerance tests (GTT) were performed after an overnight fast (16 hrs) and with 2 g/kg dextrose by intraperitoneal injection.

Figure 5: Fasting evaluation of Sur¹- treated by gavage with PBS control or CRN02481 after overnight fast demonstrating (A) plasma glucose, (B) plasma insulin, and (C) insulin/glucose ratio at times denoted. Fasting evaluation of Sur²- treated by gavage with PBS control or CRN02481 after overnight fast demonstrating (A) plasma glucose, (B) plasma insulin, and (C) insulin/glucose ratio at times denoted. Glucose tolerance test (GTT) in (D) Sur¹- mice and (E) Sur²- mice under the same conditions. (F) Plasma insulin levels by Sur²- mice at dosed times during GTT. GITT in (G) Sur¹- mice treated with PBS control or CRN02481 by gavage and (H) AUC calculation. (I) Plasma insulin levels by Sur²- mice at dosed times during GTT. AUC = area under the curve (AUC) calculation. (J) Plasma insulin levels by Sur²- mice at dosed times during GTT. AUC = area under the curve (AUC) calculation. (K) Plasma insulin levels by Sur²- mice at dosed times during GTT. AUC = area under the curve (AUC) calculation. (L) Plasma insulin levels by Sur²- mice at dosed times during GTT. AUC = area under the curve (AUC) calculation.