

PLACENTAL FRAT-1 METHYLATION IN WOMEN WITH GESTATIONAL OBESITY IS ASSOCIATED WITH **BODY COMPOSITION IN THE OFFSPRING AT 6 YEARS OF AGE**

Ariadna Gomez-Vilarrubla¹, Berta Mas-Pares², Gemma Carreras-Badosa², Silvia Xargay-Torrent², Elsa Puerto-Carranza³, Anna Prats-Puig⁴ Lourdes Ibañez⁵, Abel López-Bermejo^{2,3}, Judit Bassols¹ ¹Maternal-fetal Metabolic Research Group, Instituto de Investigación Biomédica de Girona; ²Paediatric Endocrionolgy Research Group, Instituto de Investigación Biomédica de Girona (IDIBGI), Girona; ²Paediatric Endocrionolgy Research Group, Instituto de Investigación Biomédica de Girona (IDIBGI), Girona; ²Paediatric Endocrionolgy Research Group, Instituto de Investigación Biomédica de Girona (IDIBGI), Girona; ²Paediatric Endocrionolgy Research Group, Instituto de Investigación Biomédica de Girona (IDIBGI), Girona; ²Paediatric Endocrionolgy Research Group, Instituto de Investigación Biomédica de Girona (IDIBGI), Girona; ²Paediatric Endocrionolgy Research Group, Instituto de Investigación Biomédica de Girona (IDIBGI), Girona; ²Paediatric Endocrionolgy Research Group, Instituto de Investigación Biomédica de Girona (IDIBGI), Girona; ²Paediatric Endocrionolgy Research Group, Instituto de Investigación Biomédica de Girona; ¹OIBGI), Girona; ¹OIBGI, Girona; ³Department of Paediatrics, Dr.Josep Trueta de Girona Hospital; ⁴ University of Girona, Girona; ⁵ Paediatric Endocrinology, Sant Joan de Déu Hospital, Barcelona

INTRODUCTION

The aims of this work were to study: metabolic Gestational obesity can cause offspring. Epigenetic programming the in modifications such as **DNA methylation** have been suggested as potential mechanisms underlying this programming. FRAT-1 is a gene involved in the WNT signaling pathway, which is with association lts regulator of tissue an important adipose development. at 6 years of age.

RESULTS

	Total population N=64	Normal weight gain N=39	Gestational obesity N=25	P- value
Mother				
Age (year)	30.80±4.17	30.85±4.43	30.72±3.79	n.s
Height (cm)	163.02±5.73	163.17±6.16	162.76±5.05	n.s
Weight 1st T (Kg)	67.80±13.85	64.45±13.72	73.50±12.36	0.012
Weight 2nd T (Kg)	72.52±12.45	67.76±10.41	79.75±11.95	<0.001
Weight 3rd T (Kg)	78.15±14.09	73.37±13.34	85.80±11.89	<0.001
GWG (Kg)	13.83±5.27	11.12±3.07	18.27±5.13	<0.001
Children 6y				
Age (year)	5.86±0.95	5.67±0.88	6.16±0.89	n.s
Weight (Kg)	22.43±5.07	21.89±5.36	23.25±4.55	n.s
Weight-SDS	0.13±1.16	0.13±1.26	0.12±1.00	n.s
Height (cm)	49.53±1.56	113.13±7.83	117.72±7.22	n.s
Height-SDS	-0.16±0.87	-0.19±1.21	0.12±1.13	n.s
BMI	16.83±2.37	16.95±2.60	16.66±1.99	n.s
BMI-SDS	0.22±1.11	0.31±1.22	0.09±0.92	n.s
% Fat mass	23.86±8.73	23.87±9.11	23.84±8.30	n.s
% Fat mass-SDS	0.30±1.49	0.34±1.57	0.24±1.40	n.s
Glucose (mg/dl)	82.42±7.99	81.46±7.88	83.92±8.10	n.s
Insulin (uU/mI)	5.58±2.30	5.57±2.46	5.59±2.07	n.s
Visceral Fat (cm ²)	5.19±1.13	5.10±1.17	5.34±1.07	n.s
Visceral fat-SDS	0.25±1.14	0.24±1.21	0.26±1.05	n.s

Table 1: Descriptive analysis of the endocrine-metabolic parameters from both mothers and the offspring at 6 years of age.

OBJECTIVES

The **methylation** status of **FRAT-1** in placentas of women with either normal weight or gestational obesity. endocrinemetabolic parameters in the offspring

FRAT-1 methylation status was significantly associated with **a** lower percentage of total fat mass **SDS** (r = -0.274; p = 0.037) at 6 years of age. In women with gestational FRAT-1 obesity, methylation negatively was associated with weight-SDS, BMI-SDS, and visceral fat-SDS (r from – 0.409 to -0.599; all p <0.05). In multivariate analysis, adjusted for variables, confounding the placental methylation status of FRAT-1 was a predictor of the percentage of fat mass-SDS at 6 years of age ($\beta = -0.263$; p = 0.041; R2 = 0.140; as well as of weight-SDS ($\beta = -0.552$; p = 0.030; R2 = 0.060), BMI-SDS ($\beta = -0.713$; p = 0.003; R2 = 0.232) and visceral fat-SDS ($\beta = -0.452$; p = 0.042; R2 = 0.319) in the offspring of mothers with gestational obesity.

METHODOLOGY

CONCLUSIONS

Our results suggest that the methylation of the FRAT-1 gene may play a role in regulating the body composition of the offspring at 6 years of age. This methylation may explain, at least in part, the metabolic programming in the offspring caused by gestational obesity.

A global methylation array (Infinium[®] Methylation EPIC BeadChip) was made in placental samples from 24 pregnant mothers with either normal weight gain or gestational obesity. Two CpGs in FRAT-1 were significantly associated with increased maternal weight during gestation (FDR = 2.20x10-6 and OR = 0.91; FDR = 2.17x10-6 and OR = 0.94). The methylation status of these CpGs in FRAT-1 was validated by pyrosequencing in a cohort of 64 pregnant women (39 with normal weight gain and 25 with gestational obesity) and its association with endocrine-metabolic parameters [weight, height, body mass index (BMI) and body composition] in the offspring at 6 years of age was assessed.

-			-			-			
	Total population (N=64) % FM -SDS		Gestational Obesity Group (N=25)						
			Weight-SDS		BMI-SDS		Visceral fat-SDS		
	β	р	β	р	β	р	β	р	
nethylation %	-0.263	0.041	-0.552	0.030	-0.713	0.003	-0.452	0.042	
Maternal age	0.263	0.047	-0.227	n.s	-0.153	n.s	-0.191	n.s	
al weight gain	-0.106	n.s	0.092	n.s	0.088	n.s	-0.040	n.s	
estational age	0.008	n.s	-0.000	n.s	-0.188	n.s	-0.112	n.s	
wborn weight	-0.264	n.s	0.207	n.s	-0.337	n.s	0.363	n.s	
R2 model	0.140		0.060		0.232		0.319		
R2 FRAT-1	. 0.059		0.129		0.240		0.328		

Hospital Universitari de Girona Doctor Josep Trueta

Biomèdica

Graphical Figure 2: representation the ot correlations between FRAT-1 methylation % and the endocirne-metabolic parameters of the 6 year children. B) Multivariate adjusted for analysis confounding variables.

ESPE 2021

