

Niki PARASKEVOPOULOU, Evelien GEVERS

INTRODUCTION

Weaver syndrome [MIM 277590] is a rare condition characterized by tall stature, charasteristic facial features and variable intellectu disability. Other features include:

- retrognathia, stuck-on ch macrocephaly, hypertelorism, appearance, large fleshy ears
- soft and doughy skin, umbilical hernia, abnormal muscle tor hoarse, low-pitched cry, dysarthric speech
- Skeletal abnormalities: advanced bone age, restriction of jo mobility, camptodactyly, prominent finger pads, clinodactyly of fi broad thumbs, foot deformities (talip toes, finger and equinovarus, talipes calcaneovalgus, metatarsus adductus, p adductus and pes cavus), cervical spine anomalies and kyphoscoliosis
- Increased risk (neuroblastoma, haematological cancer O T malignancies)

It is caused by mutations in the EZH2 gene (enhancer of zeste homolog 2, locus 7q35-q36). The condition is autosomal dominant, but the majority of the cases occur from de novo mutations.¹

AIM

We describe a case of a male with tall stature and hip abnormalities.

METHOD

Diagnostic evaluation of tall stature

Genetic panel for tall stature			
DIS3L2	Perlman syndrome		
DNMT3A	Tatton-Brown-Rahman syndrome		
EZH2	Weaver syndrome		
GPC3	Simpson-Golabi-Behmel (X linked)		
NFIX	Marshall Smith syndrome		
NSD1	Sotos syndrome		
OFD1	Simpson-Golabi-Behmel (X linked)		
PTEN	PTEN Hamartoma Tumor Syndrome		
ZBTB20	macrocephaly		

RESULTS

Clinical case

- consanguineous Pakistani parents, tall father 195 cm, mother 161 cm, brother 186 cm, 3 sisters
- Birth weight 4.6 kg (+2.2 SD), slightly delayed milestones
- Age 5: 136 cm (+6.2 SD), 33.4 kg (+4.2 SD), BMI 17.85 kg/m² (+1.69 SD), head circumference 54 cm (+1.82 SD), HV 10 cm/year
- Age 10: 177 cm (+6.4 SD), 98.6 kg (+4 SD), BMI 31.4 kg/m² (+3.4 SD), bone age 14.5 years

Case report: Tall stature, obesity and hip dysplasia in Weaver syndrome due to a loss-of-function variant in EHZ2

Paediatric endocrinology Department, Royal London Hospital, Barts Health NHS Trust, London, UK Center for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

 stork bite forehead Mild learning difficulties Obesity, mild acanthosis nigricans Mild scoliosis Hip abnormalities Age 6: pain and restriction of hip movements Age 8: right hip subluxation, avascular necrosis Age 9: left femoral neck fracture Multiple orthopaedic interventions in childhood Age 18: total hip replacement 		Age 19: 210.5 cm (+ 4.7 SD), 198 kg, BMI 44.7 kg/m ^{2,} he • slightly coarse facial features, doughy skin, large han	
 Mild learning difficulties Obesity, mild acanthosis nigricans Mild scoliosis Hip abnormalities Age 6: pain and restriction of hip movements Age 8: right hip subluxation, avascular necrosis Age 9: left femoral neck fracture Multiple orthopaedic interventions in childhood Age 18: total hip replacement 	haz	stork bite forehead	
 Obesity, mild acanthosis nigricans Mild scoliosis Hip abnormalities Age 6: pain and restriction of hip movements Age 8: right hip subluxation, avascular necrosis Age 9: left femoral neck fracture Multiple orthopaedic interventions in childhood Age 18: total hip replacement 	ual	 Mild learning difficulties 	
 Mild scoliosis Hip abnormalities Age 6: pain and restriction of hip movements Age 8: right hip subluxation, avascular necrosis Age 9: left femoral neck fracture Multiple orthopaedic interventions in childhood Age 18: total hip replacement 	uui	 Obesity, mild acanthosis nigricans 	
 Hip abnormalities Age 6: pain and restriction of hip movements Age 8: right hip subluxation, avascular necrosis Age 9: left femoral neck fracture Multiple orthopaedic interventions in childhood Age 18: total hip replacement 	hin	 Mild scoliosis 	
 Age 6: pain and restriction of hip movements Age 8: right hip subluxation, avascular necrosis Age 9: left femoral neck fracture Multiple orthopaedic interventions in childhood Age 18: total hip replacement 		Hip abnormalities	
 Age 8: right hip subluxation, avascular necrosis Age 9: left femoral neck fracture Multiple orthopaedic interventions in childhood Age 18: total hip replacement 	ne	 Age 6: pain and restriction of hip movements 	
 Age 9: left femoral neck fracture Multiple orthopaedic interventions in childhood Age 18: total hip replacement 	•	 Age 8: right hip subluxation, avascular necrosis 	
 Multiple orthopaedic interventions in childhood Age 18: total hip replacement 	oint	 Age 9: left femoral neck fracture 	
 Age 18: total hip replacement Des 	fifth	Multiple orthopaedic interventions in childhood	
Des	Des	 Age 18: total hip replacement 	
	Des	Fig. No. Barnane Firstmane	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 •-Y

Investigations

1.1 unit/L	(ref range 1.5-12.4)
8.0 unit/L	(ref range 1.7-8.6)
135 pmol/L	(ref range 95-223)
302 mU/L	(ref range 0-323)
9.5 nmol/L	(ref range 8.6-29)
34 mmol/mol	(ref range 20-41)
18.4 pmol/L	(ref range 10.5-24.5)
1.06 mU/L	(ref range 0.27-4.2)
361 ng/ml	(ref range 129-487.5)
5 mg/L	(ref range 2.7-6.3)
	1.1 unit/L 8.0 unit/L 135 pmol/L 302 mU/L 9.5 nmol/L 34 mmol/mol 18.4 pmol/L 1.06 mU/L 361 ng/ml 5 mg/L

- Urine homocysteine normal
- OGTT: normal suppression GH (max 0.45 ng/ml), normal glucose tolerance and insulin sensitivity
- MRI brain and pituitary: normal
- DXA: BMAD L1-4: 0.258 g/cm³ (50-75th centile)
- Bone age: 6.3 years at chronological age 5 years, 15 years at age 10.5; almost fused at age 19
- Skeletal Survey: mild arachnodactyly, prominent supraorbital ridges, degenerative changes of hip joints

Cardiology normal and ophthalmology examination: myopia, alternating exotropia

- Karyotype 46,XY, microarray normal, *FraX* normal
- NSD1 (targeted Sanger sequencing): c.7636 G>A, p.Ala2546Thr (exon 23), common variant²
- Father with same NSD1 variant
- *NSD1* MLPA analysis normal

Tall stature panel: heterozygous pathogenic loss-of-function missense variant in EZH2, c.1876G>A (p.Val626Met)

nead circumference 62.5 cm (+5.5 SD). nds, feet and prominent ears, mild squint,

EHZ2 forms with EZH1, EED (embryonic ectoderm development), SUZ12 (suppressor of zeste 12 homolog), and RbAp (retinoblastomaassociated protein) the PCR2 (Polycomb Repressive Complex 2), a histone methyltransferase responsible for histone H3 at lysine 27 (H3K27) trimethylation, resulting in chromosome condensation and transcriptional suppression.³

Loss-of-function EZH2 variants result in reduced H3K27 histone methyltransferase activity, and thus de-repression of transcription of growth promoting genes, therefore leading to overgrowth.³

One more patient with the same mutation has been described: a 7-year-old boy, with birth length of 54.6 cm (+3 SD), increased height velocity, advanced bone age by 4 years, delayed development, macrocephaly, hypertelorism, retrognathia and large ears, large hands with thin, deep-set nails.⁴

In vitro expression of this variant in chondrocytes has proven reduced H3K27 methylation. A mouse with this *Ezh2* mutation shows mild overgrowth.⁴

Weaver syndrome can be associated with multiple musculoskeletal abnormalities, especially of the spine, hands and feet.

Hip abnormalities have only been described twice before:

- of her ankle.⁵

Conclusion: Early genetic evaluation with a gene panel in patients with tall stature is required to avoid unnecessary investigations. Hip dysplasia can be a feature of Weaver syndrome.

1.Tatton-Brown K et al. EZH2-Related Overgrowth. GeneReviews. 2018; http://www.ncbi.nlm.nih.gov/books/NBK148820/ 2.Türkmen S et al. Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes. EJHG. 2003; 11: 858-65. 3.Marchesi I at al. Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation, Chromatin Remodelling, Danuta Radzioch, IntechOpen, DOI: 10.5772/55370. 4.Lui JC et al. Ezh2 Mutations Found in the Weaver Overgrowth Syndrome Cause a Partial Loss of H3K27 Histone Methyltransferase Activity J Clin Endocrinol Metab, 2018;103:1470-1478 5. Mikalef P et al. Weaver syndrome associated with bilateral congenital hip and unilateral subtalar dislocation. Hippokratia. 2010;14:212-4. 6.Proud VK et al. D. Weaver syndrome: autosomal dominant inheritance of the disorder. Am J Med Genet. 1998; 79: 305-310

Sion

N E

MISSENSE, n=35 NONSENSE, n=1 PROTEINDEL, n=1

a 3-year old girl with Weaver syndrome with typical features, and congenital dislocation of bilateral hips and congenital hypoplastic talus and subtalar dislocation

• A father of 2 siblings with Weaver syndrome, also diagnosed with Weaver syndrome, with dislocated left hip in addition to bilateral talipes equinovarus.⁶

REFERENCES

ACKNOWLEDGEMENTS

We thank the patient and his family and GOSH Dept of Genetics for help with genetic analysis