Identification of a Novel Mutation in an Iranian Family with 17-β Hydroxysteroid Dehydrogenase Type 3 Deficiency

Ali Homaei1, Fatemeh Saffari2*
1. Student of Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2. Associate Professor of Pediatric Endocrinology, Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
*Corresponding Author: Fatemeh Saffari, E-mail: Drfs_saffari@yahoo.com

INTRODUCTION

The 17-β hydroxysteroid dehydrogenase 3 deficiencies (17 βHSD-3) affect testosterone biosynthesis and are one of the rare causes of 46, XY DSD. The 17 βHSD-3 gene is located on human chromosome 9q22 and includes 11 exons. This gene codes for an enzyme, 17-β hydroxysteroid dehydrogenase 3, which is the last and key isozymes in the control of male steroid synthesis and exclusively acts on the testes.

AIM

To present the clinical and genetic features of a male ambiguity due to 17β-hydroxysteroid dehydrogenase 3 deficiency in a large Iranian family.

RESULTS

The proposita was an 11-year-old girl and the first child of a consanguineous family. The external genitalia were completely female and had a short vaginal pouch. She had palpable gonads in her inguinal area and underwent bilateral gonadectomy at the age of two. At age 10, she was referred to our clinic for more evaluation. In pelvic sonography, uterine and ovarian were not seen. Her karyotype was 46, XY and her LH and FSH levels were elevated, and three of the patient’s aunts and one of the mother’s aunts had similar signs.

CONCLUSIONS

We identified a novel homozygous missense variation (c.7317>A, p.Ile2444Leu) in HSD17B3 gene in this patients.

REFERENCES


ACKNOWLEDGEMENTS

Thanks to the Clinical Research Development Unit, Gods Hospital, Qazvin University of Medical Sciences, Qazvin, Iran for its support.

CONTACT INFORMATION

Tel: +989123212858
Fax: +98 28 33344088
E-mail: drfs_saffari@yahoo.com

HSD17B3 gene structure and the mutation. B. Family pedigree of the patient.