

A rare co-existence of two autosomal recessive conditions: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency (CYP21A2 mutation) with Beta thalassemia major

¹Department of Paediatric Endocrinology and Diabetes, The Children's Hospital & The Institute of Child Health, Lahore. ²Consultant Paediatric Endocrinologist and Diabetologist, Hameed Latif Hospital, Lahore ³Department of Paediatric Gastroenterology and hepatology, The Children's Hospital & The Institute of Child Health, Lahore.

INTRODUCTION

□ 21-hydroxylase deficiency is the Of most common cause adrenal hyperplasia congenital (CAH). It is an autosomal recessive condition due to **CYP21A2** mutation leading to 21hydroxylase enzyme deficiency in adrenal gland which leads to decrease synthesis of cortisol and aldosterone and increased synthesis of androgens as shown in figure 1.

Cholesterol STAR						
↓ 17a-Hydro	oxylase	17.20 Lyase		178- HSD		
Pregnenolone	17-OH Pregnenolo	ne	DHEA -	+An	drostenediol	
3β- HSD	3β- HSD		3B-HSD		3β- HSD	
17a-Hydroxy	lase	17,20 Lyase	Ļ	178_ HSD	Ļ	
Progesterone	17-OH progestero	ne And	lrostenedi	one $- \rightarrow 1$	estosterone	
21-Hydroxylase	21-Hydroxylase	-	Aromatase		Aromatase	
— — ×	—		+	170 1180	, +	
DOC	11-Deoxycortiso	I	Estrone	1/p- H3D	Estradiol	
11β-Hydroxylase	11β-Hydroxylase					
Ļ	Ļ					
Corticosterone	Cortisol					
18 Hydroxylase						
1						
8-OH Corticosterone						
18 Oxidase						
+						
Aldosterone						

Figure-1. Showing Pathophysiology of CAH due to of 21-hydroxylase deficiency

- thalassemia □ Beta İS an autosomal recessive condition caused by defective beta-globin chain synthesis and accumulation of unbound alpha globin chains leading to ineffective erythropoiesis.
- □ We are reporting a case with rare co-existence of CAH due to 21hydroxylase deficiency with beta thalassemia major.

A 20-day old neonate presented with complaints of failure to thrive and repeated vomiting. He was born to consanguineous parents with two more sibling (one sibling known to have thalassemia major). There was no history of infant's death, ambiguous genitalia and CAH in family.

> On examination baby was severely dehydrated with normal male like genitalia (bilateral testis palpable in scrotum) as shown in figure 2.

Initial workup & Diagnosis

Aniqa Aslam¹, Sommayya Aftab^{1,2}, Tahir Shaheen¹, Muhammad Nadeem Anjum³, Anjum Saeed³, Huma Arshad Cheema³

CASE SUMMARY

Initial Presentation

> Initial investigations revealed severe hyponatremia, hyperkalemia, metabolic acidosis with raised 17-OH progesterone (table-1), all suggestive toward salt looser CAH.

Table-1 showing initial investigations

Investigations	Results
Sodium	128
Potassium	8.8 mmol/L
17-OH Progesterone	>320 ng/L

G

It was later confirmed by genetic testing that he is having CAH (21-hydroxylase deficiency) due to homozygous pathogenic CYP21A2 variant c.955C>T p.(Gln319*).

• After initial stabilization with IV hydrocortisone, he was started on long term hydrocortisone (20mg/m2/day in 3 divided doses) and (fludrocortisone 0.1 mg/ day) along with education regarding sick day management

pallor and hepatosplenomegaly. Full blood count showed Hb of 5.6 g/dl with reticulocytes count of 2.8 % and peripheral smear showing anisocytosis and poikilocytosis.

> At 11 months of age, he presented with marked

He received a transfusion and was started on folic acid supplementation with proper follow up for need of repeated transfusions and chelation

Genetic Analysis

Initial Management

Hb electrophoresis done suggestive of beta thalassemia major as shown in table-2

Hb	Result		
Electrophoresis			
HbA1	14.6 %		
HbA2	4.9 %		
HbF	80.5 %		

Table-2 Showing Hb Electrophoresis

Sion

ESPE

P2-045

29ESPE

DISCUSSION

- □ This is very rare coexistence of two different autosomal recessive conditions.
- □ Literature review just reveal only one such case reported in India in 2012 by Yewale etal.

CONCLUSION

- □ We are reporting a very unusual coexistence of two different autosomal recessive conditions: 21-hydroxylase deficiency and Beta thalassemia Major.
- □ It might be due to increased penetrance of Thalassemia major and CAH (21hydroxylase deficiency) in our population with increasing trend of consanguineous marriage.

REFERENCES

- Yewale, V.N., Gavhane, J., Dharmapalan, D. et al. Congenital Adrenal Hyperplasia with Beta-Thalassemia—A Rare Association. Indian J Pediatr 79, 1244–1245 (2012).
- Speiser PW, Azziz R, Baskin LS, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline [published correction appears in J Clin Endocrinol Metab. 2010 Nov;95(11):5137] [published correction appears in J Clin Endocrinol Metab. 2021 Jun 16;106(7):e2853]. J Clin Endocrinol Metab. 2010;95(9):4133-4160. doi:10.1210/jc.2009-2631.
- 3. Galanello, Renzo, and Raffaella Origa. "Beta-thalassemia." Orphanet journal of rare diseases vol. 5 11. 21 May. 2010, doi:10.1186/1750-1172-5-11

CONTACT INFORMATION

Aniga Aslam Aniqaslam2812@gmail.com Post-graduate Trainee The Children's Hospital & The institute of Child Health, Lahore