Growth impairment in children with severe autoimmune primary hypothyroidism and pituitary hyperplasia without goiter

D. Corica1, A.M. Kucharska2, F. Vierucci1, M. Valenzise1, A. Li Pomi1, G. Tulì1, J. Munarin2, B. Pyrzak2, G. Cesaretti2, T. Aversa1, M. Wasniewska1

1Department of Human Pathology of Adolescent and Childhood, Unit of Pediatrics, University of Messina, Messina, Italy
2Department of Pediatric and Endocrinology of the Medical University of Warsaw, Warsaw, Poland
3Pediatric, Unit, San Luca Hospital, Lucca, Italy
4Department of Public Health and Paediatric Surgery, University of Siena, Paediatric Endocrinology, Regina Margherita Children’s Hospital, Lucca, Italy
5Department of Pediatrics, University of Pisa

INTRODUCTION

Prolonged severe hypothyroidism due to Hashimoto’s thyroiditis (HT) is a rare cause of pituitary hyperplasia (PH) in children. Loss of thyroxine negative feedback causes a TRH-dependent hyperplasia of pituitary thyrotrroph cells resulting in adenohypophysis enlargement. A transdifferentiation of pituitary somatotroph cells into thyrotrroph cells could explain growth failure in those patients.

AIM

We report a case series of patients with growth impairment diagnosed with PH due to severe acquired hypothyroidism in which evaluation of anterior pituitary function at diagnosis was performed.

CONCLUSIONS

Since thyroid hormones promote GH biosynthesis, in severe primary hypothyroidism GH deficiency could be expected proportional to the hypothyroidism degree. However, in some hypothyroid patients IGF-1 concentration may be within normal range even though they have growth arrest. This is the largest pediatric cohort with PH due to severe HT in which growth arrest was the most evident presenting sign. Atrophic HT phenotype might be correlated with this specific clinical presentation. Prospective studies are needed to evaluate pituitary enlargement and thyroid volume in patients with extremely high TSH without goiter.

CASE SERIES

Ten Caucasian patients (6 females – 4 males) were evaluated in 4 Centers of Paediatric Endocrinology because of growth arrest (in 70% of patients) or growth impairment. Median age, height and BMI at diagnosis of HT were 11 years (IQR 8 – 14.8), > 2.0 SDS (±3.58 – 0.78) and 1.12 SDS (0 – 3.1), respectively. Difference between the median values of height and target height was 1.5 SDS. Median bone age retardation was 2.5 years (0 – 5.1). No goiter was documented. Brain MRI, performed to exclude intracranial expansile lesions, documented adenohypophysis enlargement in all of children. Median pituitary volume was 650 mm³ (504 - 1965). Hypothyroidism due to HT was confirmed in the entire cohort by biochemical evaluation (median and IQR: TSH 981 mIU/L, 236.6 – 1648; FT4 3.1 mIU/mL, 0.5 - 6.2; antibodies to thyroid peroxidase 809 IU/ml, 88.8 – 4480; antibodies to thyroglobulin 352 IU/ml, 15.5 – 2040) and ultrasound evaluation [reduced (40%) or normal (60%) thyroid volume associated with diffusely hypoechogenic, coarse and heterogeneous parenchymal echotexture]. Levotyroxine treatment (2 mcg/kg/day, 1.5 - 3.5) was started. Other basal hormonal evaluation demonstrated hyperprolactinemia (60%) and low concentrations of cortisol (40%). IGF-1 was lower than - 2 SDS in 50% of patients; those two patients underwent stimulation test growth hormone was subnormal. Furthermore, 70% of them had high total and LDL-cholesterol levels and 50% showed high triglycerides and transaminases levels.

Tab. 1 – Clinical features and TSH, FT4 and IGF-1 SDS levels.