

INTRODUCTION

- B-thalassemia is a hereditary chronic hemolytic anemia characterized by a defect in the synthesis of beta-globin chains, particularly common in the Mediterranean region, southern Asia, and the Middle East
- Transfusion programs and chelation therapy have greatly extended the life expectancy of patients. This has led to an increase in the prevalence of endocrine complications, linked to iron overload
- The hypothyroidism is one of the most commonly reported complications in patients with polytransfused beta thalassemia.
- Thyroid dysfunction is directly linked to the degree of iron overload.

AIM

- Main: Describe the frequency of hypothyroidism in patients with polytransfused β -thalassemia.
- Secondary: Study the linking between hypothyroidism and
- Ferritinemia rate
- Average transfusion volume (VTA)
- Duration of transfusion therapy,
- Splenectomy,
- Compliance with chelating therapy.

METHOD

- It is a descriptive, analytical and mono-centric crosssectional study which was carried out in the pediatric department of CHU Mustapha and which involved 87 patients (46 Girls and 41 Boys), followed for several years on a regular basis and treated by a transfusion regime (more than 10 transfusions) combined with a chelating treatment.
- All patients were evaluated by a clinical history, a somatic examination, and then a determination of free T4 (FT4) and thyroid stimulating hormone (TSH).

- The average age of patients with hypothyroidism was 12 ± 5.3 years (12, VS 11) ; (p=0,54).
- Hypothyroidism was observed in 11 boys and 05 girls, No gender predominance (p = 0.055).
- Hypothyroidism was asymptomatic in all β-thalassemia patients at the time of diagnosis, no patient had goiter, and no central hypothyroidism was observed.
- There is a significant correlation between hypothyroidism and ferritinemia level in our study (p=0,001).
- A positive correlation was found between TSH and serum ferritin (p = 0.002) but not with FT4 (p = 0.13).
- A significant correlation was found between VTA and hypothyroidism , (p = 0.016).
- After logistic regression, only ferritinemia was retained as a prognostic factor for hypothyroidism. (ORa = 6.1. P = 0.003 for a ferritinemia threshold of 2500 μ g / l).

- Hypothyroidism in thalassemia develops as a result of siderosis of thyroid cells, usually seen in the second decade of life.
- An annual assessment of thyroid function is recommended in polytransfused β -thalassemic patients from the age of 10 years.
- Recognizing and treating hypothyroidism early in thalassemia help improve the quality of life for these patients.

Thyroid dysfunction in Beta-thalassemia patients

M. Noumi¹, MS. Ladj¹, R. Terrak¹, L. Aissat¹, R.Boukari¹ 1. CHU Mustapha Pacha, Algiers, Algeria

RESULTS

Primary hypothyroidism is present in 16 (18.4%) patients, this hypothyroidism is subclinical in 12 (13.8%) patients and obvious in 04 (4.6%) patients.

Tranche /Age Year	n	%
< 5	10	11,5
5-10.	32	36,8
10-15.	23	26,4
> 15	22	25,3

CONCLUSIONS

- 2008;55(2):447-60.
- mars 2016;10(3):359-70.

- 2009;33(sup1):S116-26.

				Hypothyroïdie n=16	Euthyroïdie n=71	OR	Ρ	Multi- varie
Hypothyroidism 70 70 70 70 70 70 70 70 70 70 70 70 70	yroidism	Age (year)		12	11		0,54	
	16 (18%) hypothyroidism	Sexe	Boys	11(68,8)	30(42,3)	3	0,055	
			Girls	5(31,3)	41(57,7)			
Hypothyroidism Gender	oidism	Ferritinémie	> 2500	8(50)	10(14,1)	6,1	0,001	0,003
	µg/l	<2500	8(50)	61(85,9)				
11		Splénectomy	Yes	5(31,3)	28(39,4)		0,542	
Boys Girls			No	11(68,8)	43(60,8)			
πγροτηγιοιαιsm	Hypothyroidism Euthyroidie P	VTA ml/kg/an	Yes	9(56,3)	18 (25, 4%)	3,78	0,016	
Age 12±5,3 ans	11±6 ans 0,54		No	7 (43,8%)	53(74,6%)			
		Duration	> 10 y	7(20,6%)	27 (79,4%)		0,67	
		(year)	<10 y	9(17%)	44(83%)			
		Compliance	yes	13(81,2)	61(85,9)		0,636	
			No	3 (18,8)	10(14,1)			

REFERENCES

Cunningham MJ. Update on Thalassemia: Clinical Care and Complications. Pediatr Clin North Am. avr

Brissot P. Optimizing the diagnosis and the treatment of iron overload diseases. Expert Rev Gastroenterol Hepatol. 3

Italian Working Group on Endocrine Complications In Non-endocrine Diseases. Multicentre study on prevalence of endocrine complications in thalassaemia major. Clin Endocrinol (Oxf). juin 1995;42(6):581-6.

De Sanctis V, Soliman A, Elsedfy H, Skordis N, Kattamis C, Angastiniotis M, et al. Growth and endocrine disorders in thalassemia: The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab. 2013;17(1):8.

Soliman AT, Khalafallah H, Ashour R. Growth and Factors Affecting it in Thalassemia Major. Hemoglobin. janv

ACKNOWLEDGEMENTS

I would particularly like to thank:

• Professor Boukari Rachida who supervised me in this work.

• The staff of the laboratories of the Biochemistry Laboratory of CHU Mustapha Pacha , particularly Professor Yergui. The staff of the hormonology units of the CPMC (Center Pierre-et-Marie-Curie)

particularly Professor Griene, Dr Himer.

CONTACT INFORMATION

E-mail: noumimus@gmail.com

Poctor no