P2-D2-304

Reference curves for bone mineral density in Korean adolescents and young adults aged 10 to 25 years: The Korean NHANES, 2009~2011

Shin Hye Kim¹, Mi Jung Park¹ and Duk Hee Kim²

¹ Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea ²Sowha Children's Hospital, Seoul, Korea.

Introduction

Currently, the most commonly used quantitative radiologic method for assessing bone mass is dual-energy x-ray absorptiometry (DXA). Lumbar spine (LS), total body (TB), and total body less head ITBLH) scans are recommended for preferred for clinical assessment of bone health in children. However, normative data for bone mineral density (BMD) in Asian adolescents and youth are scarce.

Objectives

We aimed to provide normative values and reference curves for BMD in Korean adolescents and youth.

Subjects and Methods

Using the data from Korean National Health and Nutrition Examination Survey (KNHANES) in 2008~2011, a total of 3,352 subjects (1,635 males and 1,717 females aged 10-25 years), were included for this study. BMD were measured using DXA at LS, TB, and TBLH. Age related reference curves for BMD were generated using the LMS statistical procedure.

Results

The BMD increased with age in both genders, and reached a plateau at ages 16-17 in males and at age 15 in females. Peak BMD velocities occurred at ages 13-14 in males; at ages 11-12 in females. Peak bone mass (PBM) of all study regions was achieved by the age of 21 and 19 in male and females, respectively. BMD in LS, TB, and TBLH was maintained until the age of 25.

Table 1. Lumbar spine BMD : LMS parameters and BMD values of -2SD by sex									Table 2. Total body BMD : LMS parameters and BMD values of -2SD by sex									Table 3. Total body less head BMD : LMS parameters and BMD values of -2SD by sex												
		Ma	ile				Fen	nale			Male						Female				Male						Female			
Age yr	LMS parameters and -2SD				Age yr	LMS parameters and -2SD			Age yr	LMS parameters and -2SD			Age yr	LMS parameters and -2SD			Age yr	LMS parameters and -2SD			Age yr	LMS	LMS parameters and -2SD							
(n)	L	М	S	-2SD	(n)	L	М	S	-2SD	(n)	L	М	s	-2SD	(n)	L	м	s	-2SD	(n)	L	М	S	-2SD	(n)	L	М	S	-2SD	
10 (119)	0.068	0.577	0.133	0.441	10 (106)	0.560	0.643	0.150	0.463	10 (118)	0.035	0.852	0.090	0.712	10 (108)	0.770	0.846	0.104	0.674	10 (118)	0.157	0.705	0.098	0.578	10 (108)	1.035	0.716	0.109	0.560	
11 (123)	0.226	0.630	0.135	0.477	11 (113)	0.588	0.710	0.144	0.518	11 (127)	0.057	0.892	0.093	0.740	11 (111)	0.754	0.894	0.102	0.716	11 (127)	0.227	0.757	0.100	0.617	11 (111)	0.899	0.758	0.106	0.600	
12 (131)	0.380	0.687	0.136	0.515	12 (95)	0.616	0.774	0.139	0.571	12 (133)	0.084	0.933	0.096	0.769	12 (95)	0.733	0.940	0.101	0.756	12 (133)	0.307	0.808	0.101	0.655	12 (95)	0.766	0.797	0.102	0.638	
13 (110)	0.516	0.749	0.137	0.557	13 (120)	0.640	0.828	0.134	0.617	13 (109)	0.119	0.976	0.098	0.801	13 (123)	0.708	0.981	0.099	0.792	13 (109)	0.397	0.858	0.103	0.693	13 (123)	0.640	0.828	0.099	0.670	
14 (139)	0.624	0.810	0.137	0.600	14 (100)	0.656	0.869	0.129	0.655	14 (143)	0.168	1.020	0.100	0.833	14 (105)	0.682	1.013	0.098	0.821	14 (143)	0.495	0.904	0.103	0.727	14 (105)	0.530	0.850	0.096	0.695	
15 (101)	0.701	0.861	0.136	0.638	15 (84)	0.661	0.899	0.125	0.684	15 (105)	0.240	1.058	0.100	0.861	15 (89)	0.657	1.038	0.097	0.844	15 (105)	0.608	0.941	0.104	0.754	15 (89)	0.434	0.866	0.093	0.713	
16 (90)	0.743	0.901	0.133	0.669	16 (97)	0.659	0.920	0.121	0.706	16 (93)	0.314	1.091	0.100	0.886	16 (97)	0.633	1.055	0.095	0.862	16 (93)	0.720	0.968	0.103	0.775	16 (97)	0.346	0.877	0.091	0.727	
17 (100)	0.754	0.929	0.131	0.695	17 (90)	0.648	0.934	0.119	0.722	17 (105)	0.370	1.118	0.100	0.909	17 (99)	0.603	1.068	0.094	0.875	17 (105)	0.809	0.990	0.102	0.792	17 (99)	0.253	0.884	0.089	0.737	
18 (83)	0.746	0.951	0.128	0.716	18 (64)	0.625	0.942	0.116	0.733	18 (87)	0.403	1.142	0.098	0.930	18 (66)	0.547	1.077	0.092	0.887	18 (87)	0.868	1.007	0.101	0.807	18 (66)	0.135	0.889	0.087	0.746	
19 (92)	0.731	0.968	0.125	0.735	19 (116)	0.587	0.948	0.115	0.741	19 (92)	0.419	1.163	0.097	0.951	19 (117)	0.459	1.085	0.091	0.898	19 (92)	0.902	1.023	0.099	0.822	19 (117)	-0.018	0.895	0.085	0.755	
20 (45)	0.719	0.984	0.122	0.752	20 (87)	0.531	0.952	0.113	0.747	20 (46)	0.424	1.182	0.095	0.970	20 (93)	0.338	1.092	0.089	0.908	20 (46)	0.922	1.038	0.098	0.837	20 (93)	-0.203	0.899	0.084	0.763	
21 (55)	0.712	0.997	0.120	0.767	21(106)	0.451	0.955	0.113	0.753	21 (51)	0.422	1.197	0.093	0.987	21(104)	0.192	1.098	0.088	0.917	21 (51)	0.931	1.050	0.096	0.850	21(104)	-0.416	0.903	0.083	0.769	
22 (102)	0.712	1.005	0.117	0.778	22 (102)	0.352	0.957	0.112	0.758	22 (97)	0.416	1.206	0.091	1.000	22 (103)	0.027	1.103	0.087	0.926	22 (97)	0.934	1.058	0.094	0.861	22 (103)	-0.650	0.905	0.082	0.775	
23 (101)	0.721	1.007	0.115	0.784	23 (122)	0.241	0.957	0.111	0.762	23 (97)	0.410	1.211	0.088	1.008	23 (124)	-0.150	1.108	0.086	0.935	23 (97)	0.937	1.062	0.092	0.868	23 (124)	-0.901	0.906	0.081	0.779	
24 (78)	0.735	1.006	0.113	0.786	24 (134)	0.123	0.957	0.110	0.766	24 (80)	0.409	1.209	0.086	1.011	24 (139)	-0.336	1.111	0.084	0.944	24 (80)	0.943	1.062	0.090	0.871	24 (139)	-1.166	0.907	0.080	0.783	
25 (105)	0.754	1.003	0.111	0.787	25 (111)	0.001	0.957	0.109	0.770	25 (108)	0.414	1.205	0.084	1.012	25 (117)	-0.527	1.114	0.082	0.951	25 (108)	0.952	1.060	0.089	0.873	25 (117)	-1.441	0.908	0.080	0.787	

Fig.1. Reference curves for lumbar spine BMD

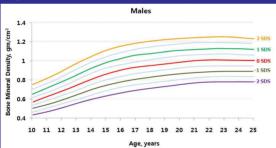


Fig.2. Reference curves for total body BMD

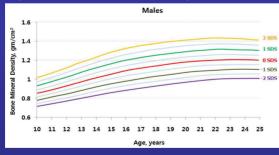
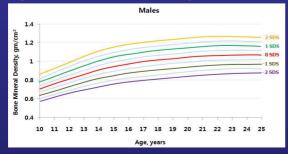
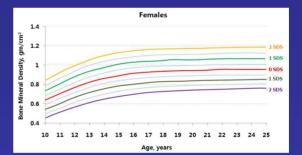
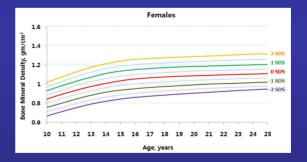
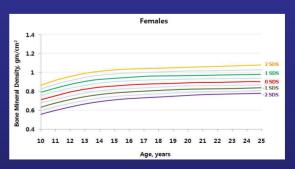






Fig.3. Reference curves for total body less head BMD

Conclusions