# HIGHER-THAN-CONVENTIONAL SUBCUTANEOUS REGULAR INSULIN DOSES FOLLOWING DIABETIC KETOACIDOSIS ARE ASSOCIATED WITH BETTER SHORT-TERM GLYCEMIC CONTROL IN CHILDREN AND ADOLESCENTS



Özlem BAĞ<sup>1</sup>, Selma TUNÇ<sup>2</sup>, Özlem NALBANTOĞLU<sup>2</sup>, Çiğdem ECEVİT<sup>1</sup>, Aysel ÖZTÜRK<sup>1</sup>, Behzat ÖZKAN<sup>2</sup>, <u>Korcan DEMİR</u><sup>3</sup>

- <sup>1</sup> Clinics of Pediatrics, Behçet Uz Children's Hospital, İzmir, Turkey
- <sup>2</sup> Clinics of Pediatric Endocrinology, Behçet Uz Children's Hospital, İzmir, Turkey
- <sup>3</sup> Division of Pediatric Endocrinology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey



#### **BACKGROUND**

Initial daily insulin dose following resolution of diabetic ketoacidosis (DKA) differs

- -Some guidelines recommend 0.5–1.0 units/kg/d
- -Up to 2 units/kg/d are used in various centers

## **OBJECTIVE**

To evaluate the effect of initial insulin dose on glycemic control in first 48 hours after DKA in children and adolescents with new onset T1DM

#### METHODS and SUBJECTS

Retrospective analysis of records of patients with DKA in the last 3 years evaluated in a tertiary reference center

- -n=76, median (25th-75th p) age=10.0 (6.0-12.0) years M/F:44/32
- -Group 1: n=28, median dose= 1.45 u/kg/d (1.41-1.5) -Group 2: n=48, median dose= 0.96 u/kg/d (0.89-1)

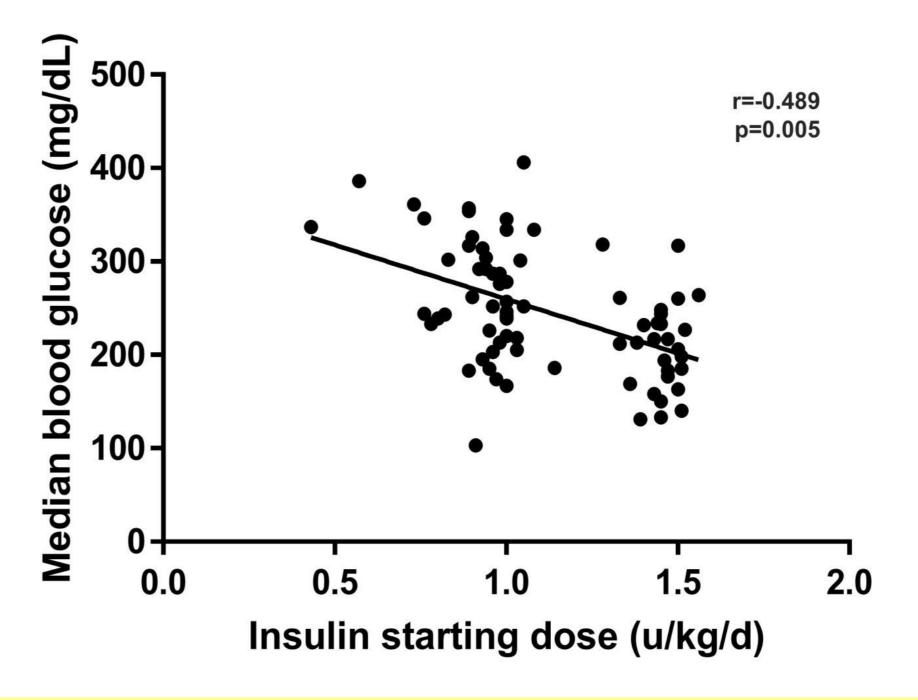



Figure 1. Correlation of starting insulin dose with median level of subsequent blood glucose measurements.

# RESULTS

|                                     | Group 1        | Group 2       | p      |
|-------------------------------------|----------------|---------------|--------|
|                                     | (n=28)         | (n=48)        |        |
| Age (years)                         | 10.5           | 9 (6-11.9)    | 0.205  |
|                                     | (5.63-13.6)    |               |        |
| Male                                | 15 (53.6%)     | 29 (60.4%)    | 0.560  |
| Pubertal patient                    | 15 (53.6%)     | 21 (44%)      | 0.479  |
| Blood glucose on                    | 465 (366-      | 466 (394-     | 0.635  |
| admission (mg/dL)                   | 577)           | 573)          |        |
| pH                                  | 7.18           | 7.16          | 0.987  |
|                                     | (7.06-7.24)    | (7.03-7.24)   |        |
| Bicarbonate (mmol/L)                | 9.6 (7.3-11.7) | 8.5 (5.5-13)  | 0.983  |
| <b>μ</b>                            | 12.8           | 12.5          | 0.509  |
| HbA1c (%)                           | (11.2-14.6)    | (10.6-13.8)   | 0.598  |
| Dose of insulin                     | 0.1 (0.1-0.1)  | 0 1 (0 1-0 1) | 0.042  |
| infusion (u/h)                      | 0.1 (0.1-0.1)  | 0.1 (0.1-0.1) | 0.072  |
| Blood glucose at the                | 159 (124-      | 157 (123-     |        |
| start of subcutaneous               | 194)           | 200)          | 0.718  |
| insulin (mg/dL)                     | 101)           | 200)          |        |
| Starting insulin dose               | 1.45           | 0.96          | <0.001 |
| (u/kg/d)                            | (1.41-1.5)     | (0.89-1)      | 701001 |
| Insulin dose on 1 <sup>st</sup> day | 1.5            | 0.99          | <0.001 |
| (u/kg/d)                            | (1.41-1.56)    | (0.93-1.03)   | 401001 |

**Table 1.** Descriptive data of patients among the two groups.

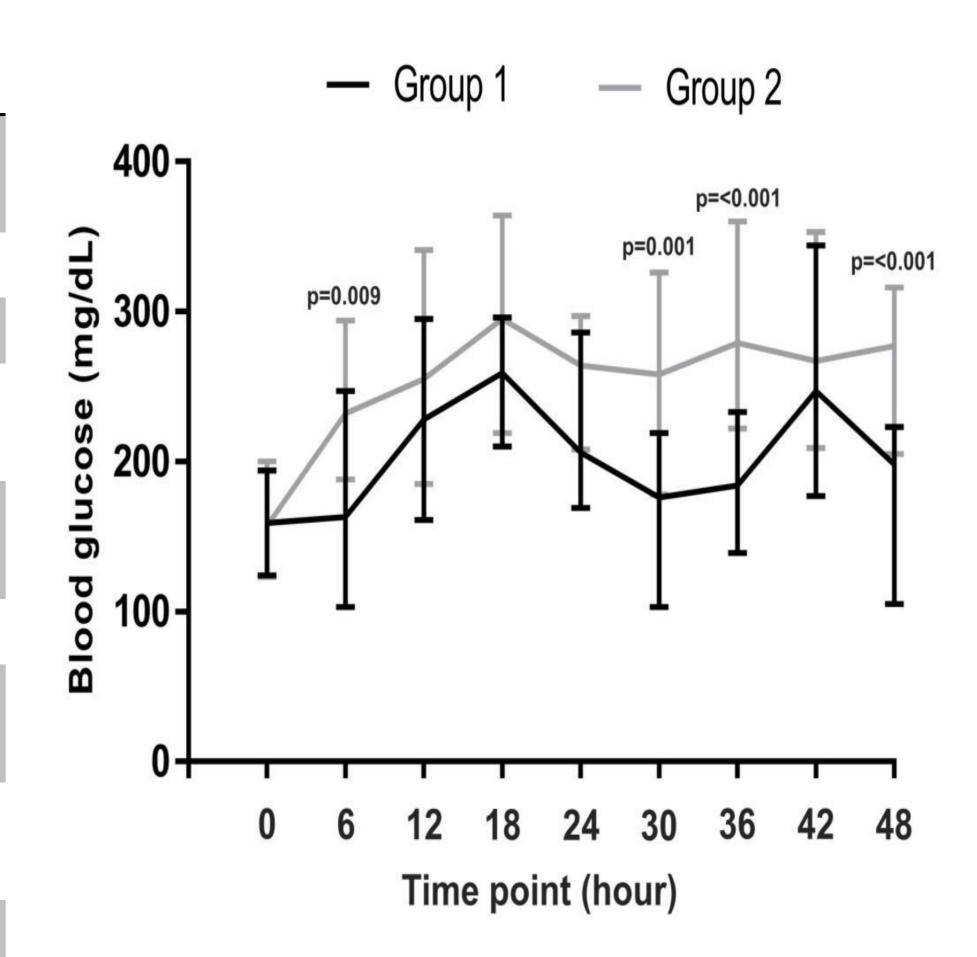


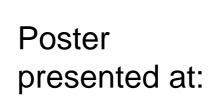

Figure 2. Median, 25th, and 75th percentile values of the two groups are shown at the baseline and specific time points during first two days of subcutaneous insulin treatment

|                                           | Group 1<br>(n=28) | Group 2<br>(n=48) | p      |
|-------------------------------------------|-------------------|-------------------|--------|
| Median BG levels                          | 213<br>(171-242)  | 255<br>(222-316)  | <0.001 |
| Minimum BG<br>levels                      | 102<br>( 85-151)  | 129<br>(105-109)  | 0.004  |
| Maximum BG<br>levels                      | 335<br>(290-365   | 375<br>(341-438)  | <0.001 |
| Ratio of BG<br>levels in 100-200<br>mg/dl | 37.5%             | 12.5%             | 0.001  |
| Ratio of BG<br>levels >200<br>mg/dl       | 50%               | 81.3%             | <0.001 |
| Number of patients with hypoglycemia      | 5 (17.9%)*        | 4 (8.3%)*         | 0.276  |

**Table 2.** BG measurements of the two groups during first 48 hours. \*None had severe hypoglycemia.

#### CONCLUSIONS

After resolution of DKA, a higher initial dose of 1.4-1.5 u/kg/day regular insulin is associated with better glycemic control in children and adolescents without increased risk of hypoglycemia.


### REFERENCES

- Danne T, Bangstad H-J, Deeb L, et al. Insulin treatment in children and adolescents with diabetes.
   Pediatric Diabetes 2014; 15 (Suppl. 20): 115–134.
- Wang Y, Gong C, Cao B, et al. Influence of initial insulin dosage on blood glucose dynamics of children and adolescents with newly diagnosed type 1 diabetes mellitus. Pediatric Diabetes. 2016 Mar 6. doi: 10.1111
- Mar 6. doi: 10.1111 3. Malik FS, Taplin CE. Insulin therapy in children and adolescents with type 1 diabetes. Paediatr Drugs. 2014 Apr;16(2):141-50
- 4. Tridgell DM, Tridgell AH, Hirsch IB. Inpatient management of adults and children with type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39 (3):595-608
- 5. Sherr J, Tamborlane WV, Xing D et al. Achievement of target A1C levels with negligible hypoglycemia and low glucose variability in youth with short-term type 1 diabetes and residual beta-cell function. Diabetes Care 2012; 35: 817–820
- 6. Colino E, Álvarez MÁ, Carcavilla A, Alonso M, Ros P, Barrio R. Insulin dose adjustment when changing from multiple daily injections to continuous subcutaneous insulin infusion in the pediatric age group. Acta Diabetol. 2010;47 Suppl 1:1-6.



Diabetes

Korcan Demir







