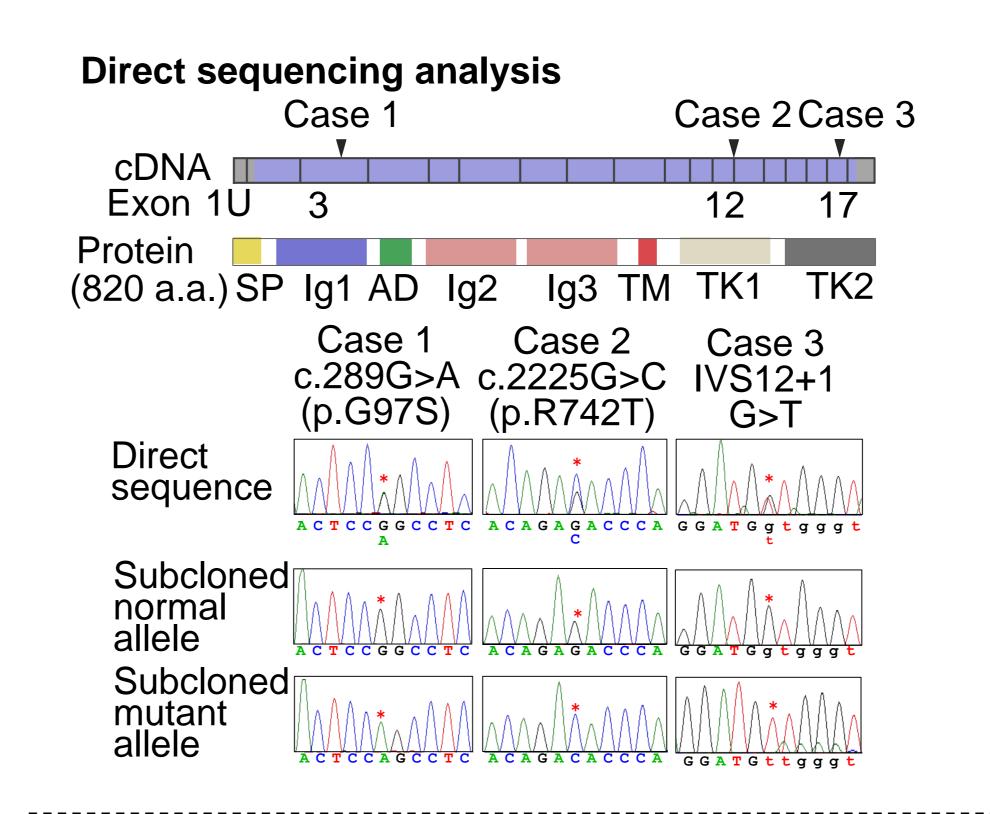
TITLE

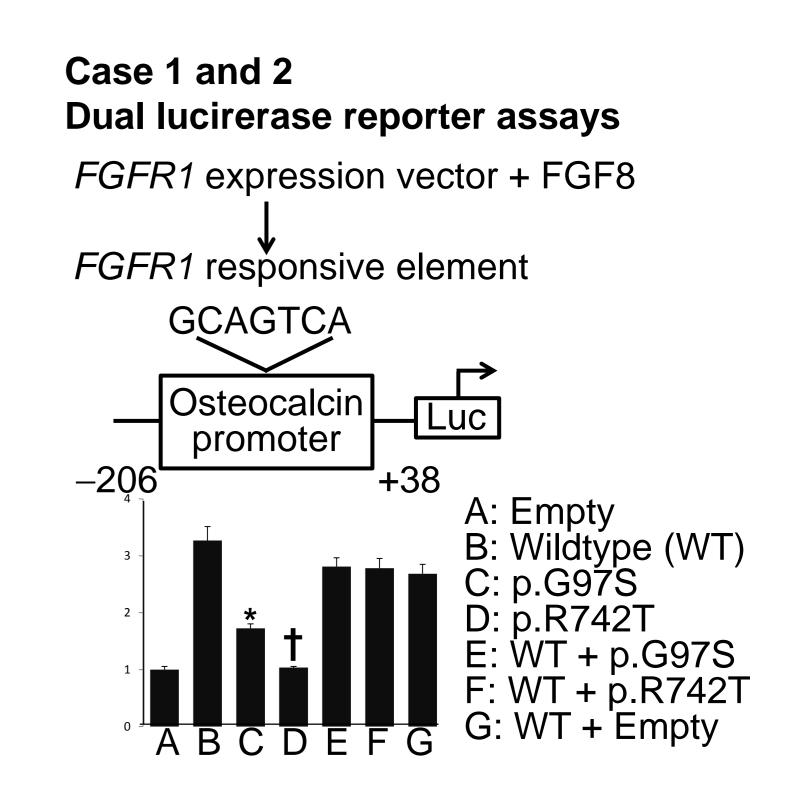
FGFR1 loss-of-function mutations of in three Japanese patients with isolated hypogonadotropic hypogonadism and split hand/foot malformation

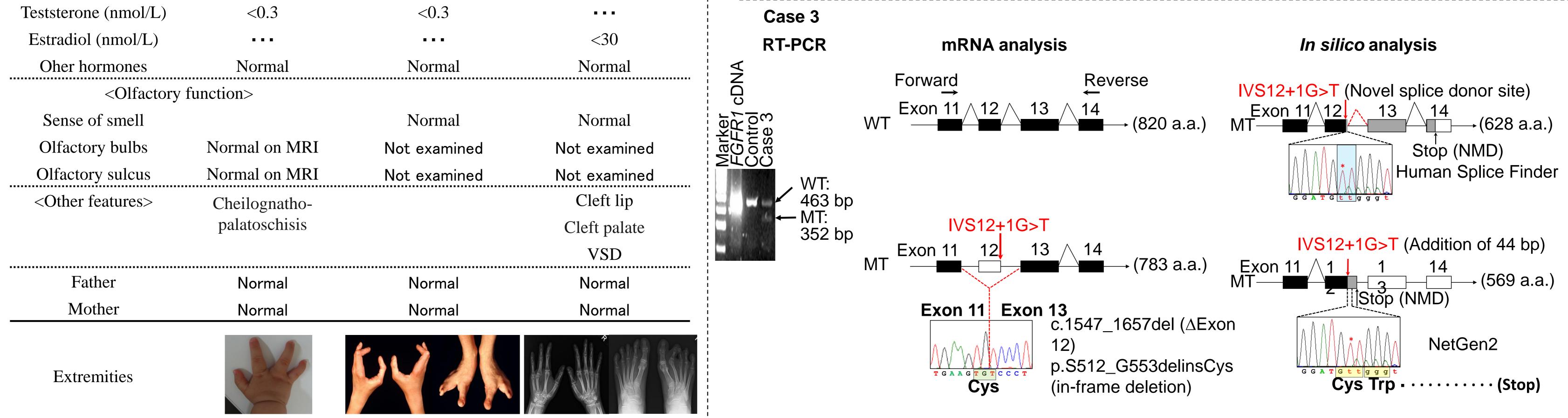
Authors

Kohnosuke Ohtaka¹; Rie Yamaguchi¹; Hideaki Yagasaki¹; Tatsuya Miyoshi²; Yukihiro Hasegawa²; Tomonobu Hasegawa³; Hideaki Miyoshi⁴; Maki Fukami⁵; Tsutomu Ogata¹

Hospital


1)Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; 2)Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; 3)Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; 4)Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and 5)Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.


METHODS		
Method: This study consisted three Japanese patients (cases 1–3) with IHH and SHFM. Case 1 was a 3-month-old boy with micropenis, low serum LH (<0.1 mIU/mL) and testosterone (<0.03 ng/mL) at mini-puberty, and right split hand. Case 2 was a 17 year old boy with no pubertal development. low serum LH (<0.1 mIU/mL) and		


mutation

heterozygous loss-of-function mutations lead to IHH and split hand/foot malformation (SHFM). **Objective and hypotheses:** The objective of this study was to examine *FGFR1* in three Japanese patients with IHH and SHFM. testosterone (<0.03 ng/mL), and bilateral split hands and feet. Case 3 was a 34-yearold female with primary amenorrhea, low serum LH (0.4 mIU/mL) and E2 (<10 pg/mL), and left split hand. We performed direct sequencing for *FGFR1* coding regions and their flanking splice sites, luciferase analysis for missense mutations, and RT-PCR based sequence analysis and *in silico* analysis for a splice donor site

	Case 1	Case 2	Case 3
Age at examination	3 months	17.5 years	34 years
Sex	Male	Male	Female
<genital fi<="" td=""><td>indings></td><td></td><td></td></genital>	indings>		
Tanner stage	G1, PH1	G1, PH1	G1, PH2
Penile length (cm)	0.9	3	
Testis size (mL)	<1	2	• • •
Testis position	Inguinal	Inguinal	• • •
Scrotum	Hypoplastic	Hypoplastic	
Uterus			Hypoplastic on MRI
<serum horm<="" td=""><td>one values></td><td></td><td></td></serum>	one values>		
LH (IU/L)	$<0.10 \rightarrow 0.68$	$<0.5 \rightarrow <0.5$	$0.4 \rightarrow 3.4$
FSH (IU/L)	$0.29 \rightarrow 5.04$	$< 0.5 \rightarrow < 0.5$	$2.1 \rightarrow 6.6$

RESULTS

Direct sequencing identified two heterozygous missense mutations (a previously reported p.G97S in case 1 and a novel p.R744T in case 2) and a novel heterozygous splice donor site mutation (IVS12+1G>T in case 3). The two missense mutations had drastically reduced luciferase activities, without a dominant negative effect. The splice donor site mutation was found to have yielded a small amount of mRNA skipping exon 12 (p.Ser512_Gly553delinsCys), and was predicted to have produced two aberrant mRNAs that satisfy the condition for nonsense-mediated mRNA decay, by using an alternative splice donor site (p.G553fsX628) and by escaping splicing at the IVS12 exon-intron junction (p.G553fsX569).

CONCLUSIONS	References
The results provide further support for the notion that heterozygous loss-of-function mutations of <i>FGFR1</i> cause IHH with SHFM.	 Villanueva C, Jacobson-Dickman E, Xu C, et al. Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. <i>Genet Med.</i> 2015;17:651–659. Boehm U, Bouloux PM, Dattani MT, et al. European Consensus Statement on congenital hypogonadotropic hypogonadism - pathogenesis, diagnosis and treatment. <i>Nat Rev Endocrinol.</i> 2015;11:547–564. Li C, Xu X, Nelson DK, Williams T, Kuehn MR, Deng CX. FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. <i>Development.</i> 2005;132:4755–4764.

