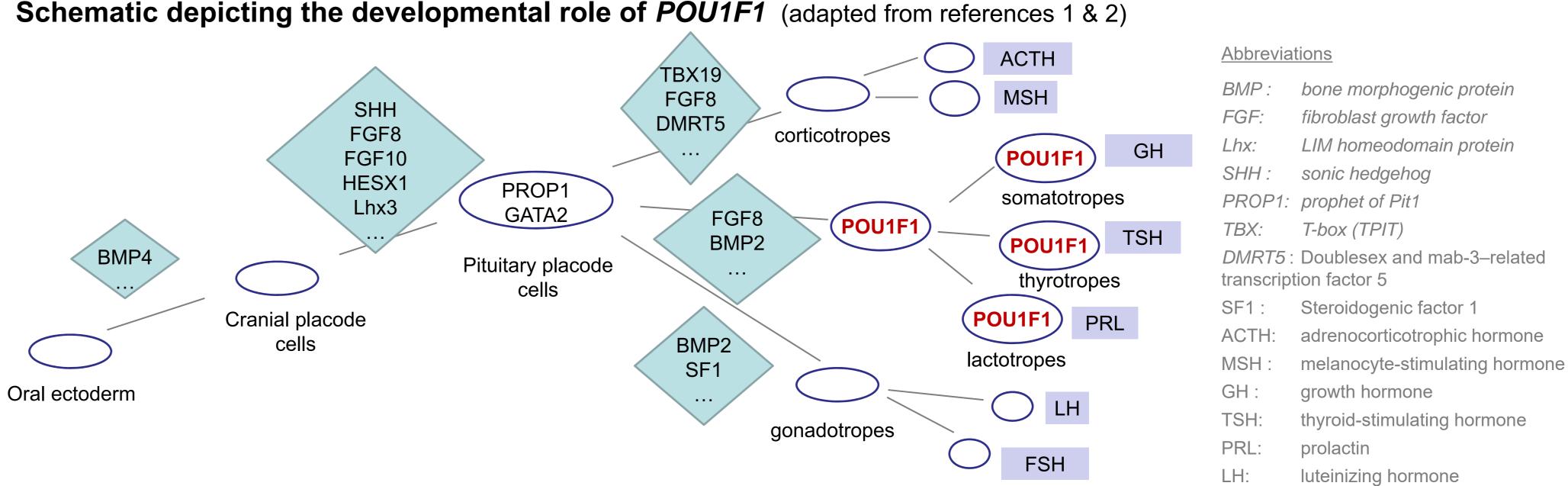


UNIL | Université de Lausanne

P2-658


Early diagnosis and treatment of a newborn with a POU1F1 mutation

T. Bouthors^a, M-C. Antoniou^a, M. Santi^a, S. Stoppa-Vaucher^a, E. Elowe-Gruau^a, F. Phan-Hug^a, A. Dwyer^b, N. Pitteloud^{a,b}, M. Hauschild^a a. Department of Pediatric Endocrinology and Diabetology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland b. Service of Endocrinology, Diabetes and Metabolism, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland

Introduction

POU1F1 (PIT-1) encodes a pituitary-specific homeodomain transcription factor that is crucial for the development and differentiation of anterior pituitary cell types.

Mutations in *POU1F1* result in combined pituitary hormone deficiency (CPHD). Specifically, POU1F1 mutations cause growth hormone (GH), thyrotropin (TSH) and prolactin (PRL) deficiency.

<0,5

1.2

2.7

7.2

>210

790

The R271W mutation exhibits a dominant-negative effect leading to mutant polypeptides that disrupt the activity of the wild-type gene when overexpressed.

FSH: follicle-stimulating hormone

Case report

Results

IGFBP3

testosterone

Genetic testing

LH

FSH

AMH

Inhibin B

Presentation & family history

Full-term infant born following spontaneous, uneventful pregnancy.

Mother's history is notable for CPHD (GH / TSH / PRL). She was diagnosed & treated at 12 months of age and harbors POU1F1 R271W mutation.

- mild developmental delay
- spontaneous puberty (menarche 12 yo)
- adult Height: 157cm (-1.1 SDS)

Physical examination

Laboratory results

	Unit	normal range	cord blood	day 2 hypoglycemia	2 months minipuberty
TSH	mU/I	3.1-6.8	0.695	1.71	
fT4	pmol/l	12-22	9	4.7	18
PRL	µg/l	4-16	2	0.4	
glycemia	mmol/l	2.1-4.9		1.7	
cortisol	nmol/l	>500		619	
insulin	mU/I			<1	
GH	nmol/l		0.06	<0.05	
IGF1	µg/l	48-313		<35	<35

0.5

0.3

3.4

0.5-1.4

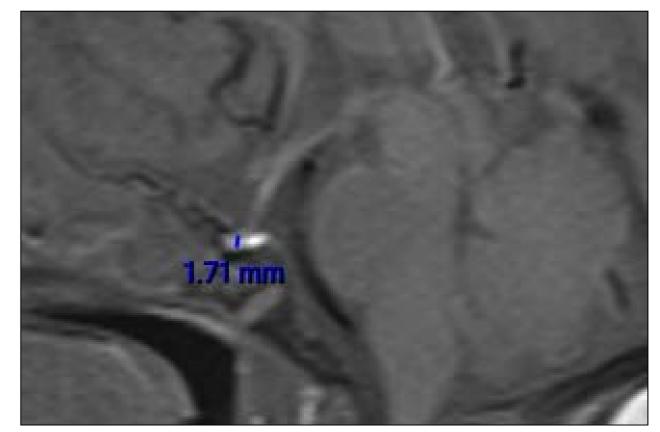
0-13

0-28

4-14

ng/l

UI/I


UI/I

nmol/l

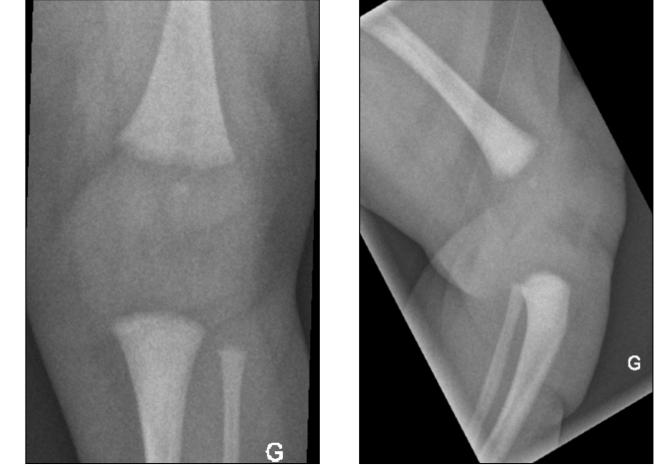
ng/ml

pg/ml

Imaging studies

Cranial MRI: hypoplastic adenohypophysis

- weight: 3300 g (-0.5 SDS)
- Iength: 47 cm. (-1.6 SDS)
- head circumference: 37.5 cm (+2.7 SDS)
- APGAR: 09/10/10
- hypotonia
- icterus
- marked nasal bridge
- Iarge fontanelles anterior:4x3.5 cm
- posterior: 2x1 cm)
- micropenis : 2.4 x 0.7cm
- otherwise normal examination


Treatment

• L-thyroxine substitution initiated on day 2 of life. • GH (0.025mg/kg/day) on day 4 of life. This effectively prevented further hypoglycemic events as evidenced by continuous glucose monitoring.


• Blood was sent to the laboratory of Dr. Roland Pfaeffle of the University of Leipzig (Germany) for genetic analysis.

CPHD confirmed \rightarrow central hypothyroidism, GHD, PRL deficiency

- Sequencing of *POU1F1* revealed the same p.R271W mutation as the mother.
- The residue maps to the C-terminal end of the POU-homeodomain (see right) http://www.uniprot.org/uniprot/P28069

Radiographs (knee): delayed bone maturation

Discussion

Diagnostic challenges

Treatment challenges

CPHD in neonates:

 \rightarrow symptoms are non-specific

 \rightarrow neonatal screening (TSH & T4) is needed to detect central hypothyroidism

Possible consequences :

- \rightarrow inverse relationship between age at hypothyroidism diagnosis/treatment and intelligence quotient³
- \rightarrow risk of brain injury due to severe, repeated hypoglycemia⁴

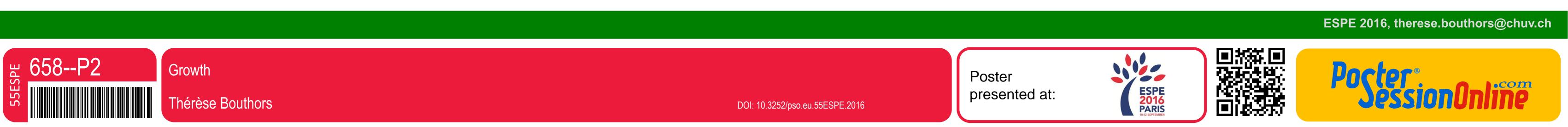
GH substitution:

 \rightarrow few cases with GH substitution beginning during neonatal period : $(starting dose = 0.021-0.033mg/kg/day)^{5}$

 \rightarrow favorable outcomes when GH treatment initiated before 1 year of age⁶

Treatment during pregnancy:

 \rightarrow thyroid substitution needs to be adapted during pregnancy


 \rightarrow to our knowledge, there is currently no recommendation for the growth hormone substitution during pregnancy

References

Kelberman et al, Endocr Rev. 2012; 30(7):790-829. 2. Zimmer Stem Cell Reports. 2016; 6(6): 858–872.

3. La Franchi SH. J Clin Endocrinol Metab. 2011; 96(10):2959-67. 4. Tam et al, J Pediatr. 2012; 161(1):88-93.

5. Huet et al, Eur J Endocrinol. 1999;140(1):29-34. 6. Scommegna et al, Horm Res. 2004; 62(1):10-16.

