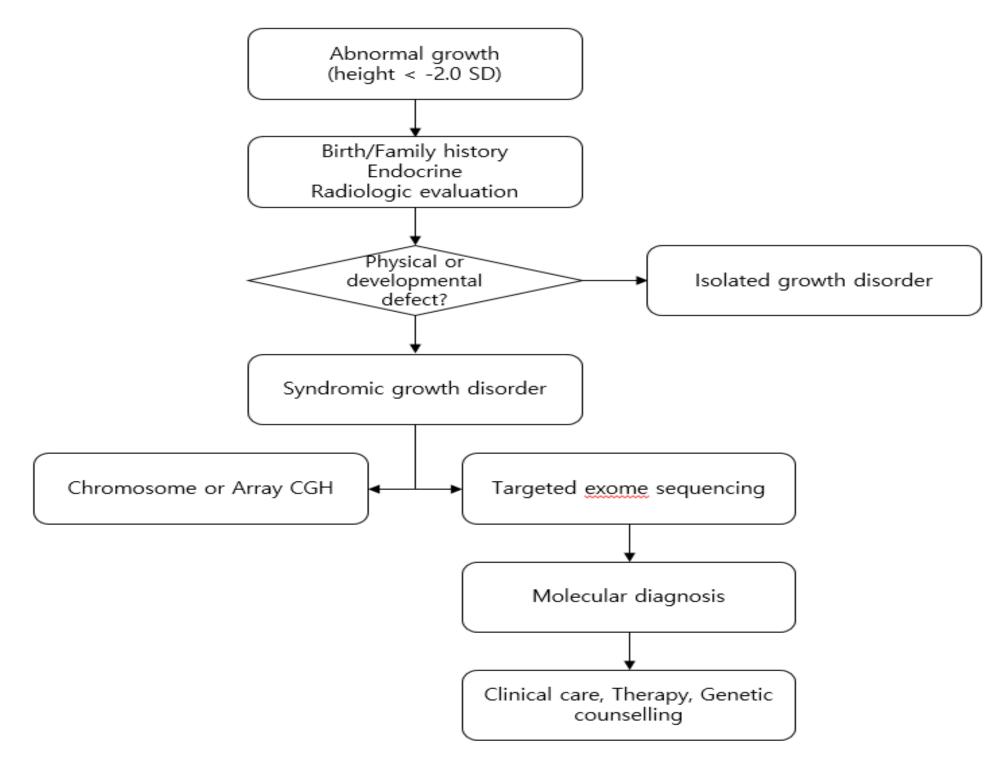


P1-P178

Identification of three novel mutations in 10 pediatric patients with unexplained syndromic short stature identified by targeted exome sequencing in Korea


<u>Chong Kun Cheon¹</u>, Yoo-Mi Kim²

¹Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea ²Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea

Introduction

• Owing to the tremendous advances in next-generation sequencing technology, numerous monogenic causes of growth disorders have been identified. Identifying novel rare genetic causes of short stature (SS) is quite challenging. In 2017, we reported a mutation analysis of 15 patients with undiagnosed syndromic SS or overgrowth. In this study, 6 mutations in another 10 Korean patients with unexplained syndromic SS are reported.

Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded.

Objectives

The aim of this study was to identify underlying genetic causes of unexplained SS

Materials and Methods

Ten pediatric patients with profound SS, mean height of -2.5 SD score (SDS), and a normal growth velocity, some of whom had additional dysmorphic features, were subjected to targeted exome sequencing (TES) study using the Next Seq platform and a TruSight One panel.

Figure. Suggested molecular diagnostic algorithms for pediatric patients with short stature

Results

Among the 10 patients with unexplained SS, 6 different disorders were identified, and the diagnostic yield was 60%. Most patients confirmed by genetic testing showed distinct facial features, including hypertelorism, low nasal bridge, and abnormal ear shape (Table 1). Most of the cases (4/6, 66.7%) had other accompanying anomalies, including congenital heart disease, kidney anomaly, and skeletal anomaly (Table 1). Two out of the 6 patients (33.3%) were born SGA. Developmental delay or intellectual disability was noted in 3 patients (30%). In the patients with SS, Coffin-Lowry syndrome (CLS) with a novel missense mutation inherited from mother, Cleidocranial dysplasia, Acid-bile subunit deficiency (ALSD) with a novel compound heterozygous mutation, Coffin-Siris syndrome (CSS) with a novel deletion mutation, X-linked creatine transporter deficiency with speech delay, and Acromesomelic dysplasia, Maroteaux type (AMDM) were identified (Table 2).

Subject	Age at Dx (yrs)	Sex	Ht, cm (SDS)	Wt, kg (SDS)	HC, cm (SDS)	MPH, cm	GA, (weeks)	Birth Wt, kg (SDS)	BA Delay	IGF-I, ng/mL (SDS)	IGFBP3, ng/mL (SDS)	Characteristics
1	9.6	Μ	122.3 (-2.072)	22.8 (-1.849)	51.5 (-0.92)	169.5	40+0	3.3 (-0.42)	yes	130.9 (-0.27)	3790 (0.42)	Hypertelorism, short nose, prominent ear, dolicocephaly, normal intelligence, wormian bone, pseudoepiphysis, delayed teeth eruption, scoliosis
2	1.6	Μ	71 (-3.589)	7.6 (-3.718)	43 (-3.60)	170.5	39+0	2.6 (-1.54)	yes	41.3 (-0.25)	1930 (0.11)	Craniofacial features including synophrys, highly arched eyebrows, long eyelashes, and short nose, hirsutism renal stone, global developmental delay, s/p ASD patch closure
3	4.8	Μ	48 (-2.873)	13 (-3.335)	49.5 (-0.99)	175.5	40+3	3.0 (-0.90)	yes	118.5 (-0.17)	3600 (0.69)	Subtle facial dysmorphism such as long face and prominent chin, speech and language delay, growth hormone deficiency, DD, autistic spectrum disorder
4	7.0	Μ	104.8 (-3.427)	14.4 (-4.914)	49 (-2.26)	NA	39+0	3.7 (0.28)	yes	88.6 (-1.31)	2280 (-0.09)	Coarse facial appearance, low nasal bridge, broad nose, prominent ear, ADHD, thoracolumbar spondylosis
5	12.0	Μ	133.5 (-2.088)	36.7 (-0.702)	NA	166.5	40+0	2.8 (-1.22)	yes	66.6 (-3.09)	514 (-0.85)	Subtle dysmorphic face with mandibular hypoplasia and a prominent forehead, SGA, growth hormone deficiency, kyposcoliosis
6	1.0	F	70 (-2.048)	8 (-1.340)	46 (-0.23)	158.5	40+0	2.9 (-1.00)	yes	48.8 (-0.29)	1930 (0.02)	Relatively macrocephlay with prominent forehead, short arms and legs

 Table1. Clinical manifestations in patient with short stature identified by genetic testing

Dx, diagnosis; Ht, height; Wt, weight; HC, head circumference; MPH, mid parental height; GA, gestational age; BA, bone age; SDS, standard deviation score; NA, not available; DD, developmental delay; ASD, atrial septal defect; SGA, small gestational age; NA, not available; yrs, years

Table2. Genetic results in patients with short stature

ESPE

Subject	Previous clinical assessment	Previous conventional analysis	Final diagnosis	Causative gene	Novelty	cDNA mutations, protein variants	Status, inheritance
1	Skeletal dysplasia, AD	46, XY	Cleidocranial dysplasia	RUNX2	Reported	c.1171C>T (p.Arg391Ter)	de novo
2	Cornelia de lange syndrome	NIPBL	Coffin-Siris syndrome	AR1D1B	Yes	c.5547delC (p.Leu1850*)	de novo
3	Syndromic disorder	46,XY	Cerebral creatine deficiency syndrome	SLC6A8	Yes	c.942_944del(p.Phe315del)	het, mat
4	Chromosome disorder	46,XY	Coffin-Lowry syndrome	RPS6KA3	Yes	c.1606G>T(p.Val536Phe)	hemi, mat
5	Unknown short stature	46,XY	Acid-labile subunit deficiency	IGFALS	Yes	c.1346T>G(p.Leu449Arg) c.1783C>T(p.Arg595Trp)	com het, pat, mat
6	Achondroplasia	46,XY, <i>FGFR3</i>	Probable acromesomelic dysplasia, Maroteaux type	NPR2	Reported	c.2326C>T (p.Arg776Trp)	het, pat

AD, autosomal dominant; het, heterozygote; mat, maternal origin; pat, paternal origin; hemi, hemizygote

Conclusions

• TES led to the diagnosis of a monogenic disorder in six of the 10 individuals, including cases with three novel mutations. This study shows that TES is a very promising tool for the identification of pathogenic mutations in patients with unexplained syndromic short stature.

References

- Huang Z, et al. Genetic Evaluation of 114 Chinese Short Stature Children in the Next Generation Era: a Single Center Study. Cell Physiol Biochem. 2018;49(1):295-305.
- Kim YM, et al. High diagnostic yield of clinically unidentifiable syndromic growth disorders by targeted exome sequencing. Clin Genet. 2017;92(6):594-605.
- Guo MH et al. Whole exome sequencing to identify genetic causes of short stature. Horm Res Paediatr. 2014;82(1):44-52.

