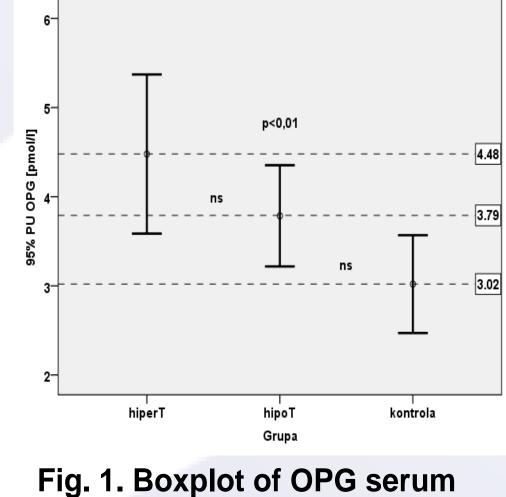

EVALUATION OF SERUM CONCENTRATIONS OF SELECTED CYTOKINES OPG AND SRANKL IN THE DIAGNOSIS **OF AUTOIMMUNE THYROID DISEASE IN CHILDREN**

Hanna Mikoś^{1,2}, Marcin Mikoś³, Marek Niedziela^{1,2}

- ¹ Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poland
- ² Molecular Endocrinology Laboratory, Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poland ³ Department of Pneumology, Allergology and Clinical Immunology, **Poznan University of Medical Sciences, Poland**

Introduction:

Chronic autoimmune thyroiditis (cAIT) and Graves' disease (GD) are the most common autoimmune disorders in children, associated with

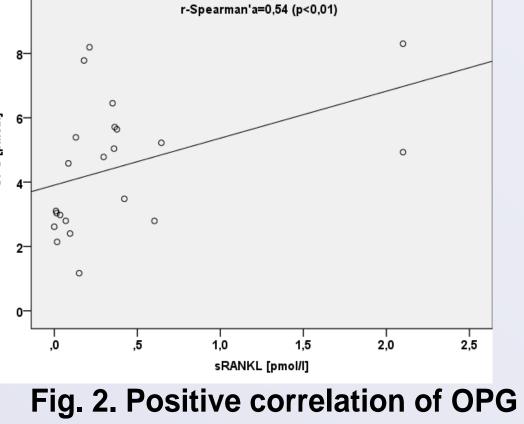

induction of inflammation and autoimmunity process. OPG, a cytokine receptor which mediates suppressive effect on osteoclastogenesis and its soluble ligand RANKL (sRANKL) are regulators of inflammation and may constitute a link between bone, autoimmune disease, and vasculature.

Objective:

We hypothesized that cytokines OPG and sRANKL play a crucial role in modulating an immune response in both, thyroid disorders in children. The aim of study was to evaluate the concentrations of OPG and sRANKL in these two opposite clinical and hormonal thyroid diseases: cAIT and GD.

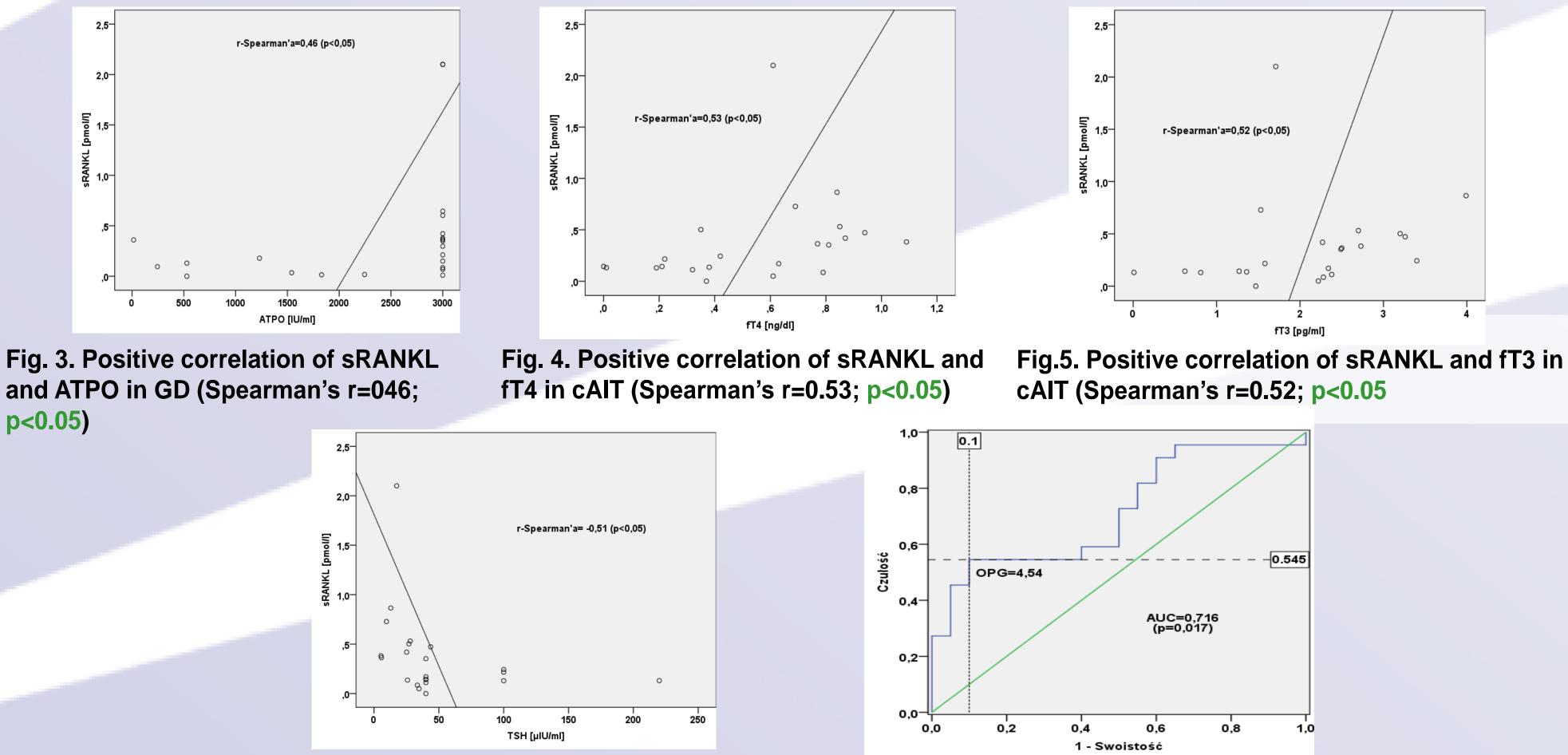
Tables and Figures:

	Hypothyroidism (hypoT)	Hyperthyroidism (hyperT)	Control group	S
n	n=22	n=22	n=20	
sex	18 girls/4 boys	16 girls/6 boys	11 girls/ 9 boys	ns
Age [years]	11.39 ± 2.68	12.68 ± 4.62	11.57 ± 4.86	ns
BMI [kg/m2]	19.18 ± 4.54	18.25 ± 3.42	18.17 ± 3.50	ns
BMI SDS	0.33 ± 1.54	-0.38 ±1.05	-0.17 ± 1.04	ns
Cole index	1.05 ± 0.22	0.95 ± 0.13	0.9 ± 70.14	ns
TSH [0.5-5.0 μIU/mL]	46.76 ± 47.59 ↑	0.01 ± 0.01 ↓	2.28 ± 0.99	p<0.001 (K-W)
fT4 [0.7-1.85 ng/dL]	0.54 ± 0.31 ↓	4.24 ± 1.06 ↑	1.03 ± 0.12	p<0.001 (ANOVA)
fT3 [1.7-3.5 pg/mL]	2.10 ± 0.97	19.01 ± 5.30 ↑	2.70 ± 0.56	p<0.001 (ANOVA)
TRAb [<1 IU/L]	0.7 ± 0.3	24 ± 20 ↑	0.5 ± 0.3	p<0.001 (K-W)
ATG [<60 UI/mL]	533 ± 770 ↑	426 ± 649 ↑	18 ± 9	p<0.001 (K-W)
ATPO [<60 IU/mL]	2597 ± 912 ↑	2280 ± 1080 ↑	13 ± 12	p<0.001 (K-W)
OPG[pmol/l] [mean ± SD median (IQR)	3.79 ± 1.28 3.77(1.79)	4.48 ± 2.01 4.68 (2.86)	3.02 ±1.17 3.00 (1.98)	p=0.013 (ANOVA)
sRANKL[pmol/l] mean ± SD median (IQR)	0.38 ± 0.45 0.23 (0.35)	0.39 ± 0.58 0.20 (0.33)	0.27 ± 0.34 0.09 (0.48)	ns p=0.33 (K-W)



concentrations in studied groups

10-


Material and Methods:

- 1. The study group consisted of 64 children, 44 newly diagnosed, untreated children with cAIT (n=22; with hypothyroidism) and GD (n=22; hyperthyroidism), and the control group of 20 healthy children. (Table 1.)
- 2. Cytokine concentrations were evaluated using the ELISA technique (Bender MedSystems GmbH, Vienna, Austria).
- 3. Statistical analysis was carried out in SPSS 17.0 for Windows (SPSS, Chicago, IL). Shapiro–Wilk normality test, ANOVA (Newman–Keuls post-test), nonparametric Kruskal–Wallis (Dunn's post-test) and Spearman's rank correlation were used.

and sRANKL in GD (Spearman's r=0.54; p<0.01)

Table 1. Descriptive statistics and signifiance of differences (ANOVA – analysis of variance, K-W – Kruskal-Wallis nonparametric test)

Results:

- 1. The studied groups of children did not differ sRANKL significantly concentrations in of (p=0.33).
- 2. We observed significantly higer concentrations of OPG in children with GD (p<0.01) (mean±SD; 4.48±2.01 pmol/L) compared to control (3.02±1.17) pmol/L); whereas no significant difference between children with cAIT (3.79±1.28 pmol/L) vs control (p>0.05) and cAIT vs GD (p>0.05) was observed. (Fig.1)
- 3. In children with hyperthyroidism we found positive correlation between both cytokines sRANKL and OPG (r=0.54); (p<0.01). (Fig. 2.) and hyperthyroid children sRANKL correlated in positively with ATPO (r=0.46); (p<0.05). (Fig.3.) 4. In hypothyroid children sRANKL correlated positively with fT4 and fT3 (r=0.53; r=0.52) and (p<0.05; p<0.05), respectively (Fig.4.;5.) and negatively correlated with TSH (r- 0.51);(p<0.05).

Fig.6. Negative correlation of sRANKL and TSH in cAIT (Spearman's r= - 0.51; p<0.05)

Fig. 7. ROC curve of OPG GD vs control (AUC=0.716, p=0.017, cut-off=4.54 pmol/l, sensitivity: 54.5%, specificity: 95%)

(Fig.6.)

5. ROC analysis indicates that OPG may be a marker hyperthyroidism, exhibiting Of good a efficacy discriminatory between group Of hyperthyroid children and healthy children: AUC=0.716; p=0.017 at cut-off point of 4.54 pmol/L, with low sensitivity 54.5%, but high specificity 95%. (Fig.7.)

Conclusion:

Based on the performed study we suggest that OPG may be considered as a useful biochemical marker of hyperthyroidism in GD children.

Poster Number: P1-P267

There was na conflict of interes related to this study contact: mniedzie@ump.edu.pl

57th ESPE 2018 Meeting **ATHENS, GREECE** 27th-29th September 2018

