

Identification of novel mutations in *FGFR1* and functional characteristics in patients with isolated gonadotropin-releasing hormone deficiency

Yena Lee¹, Juyoung Huh², Arum Oh¹, Gu-Hwan Kim³, Han-Wook Yoo¹, Jin-Ho Choi¹ Department of Pediatrics¹, Asan Institute for Life Sciences², Medical Genetics Center³, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea

Introduction

- Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is caused by a deficiency in GnRH production, secretion or action.
- IGD is a highly heterogeneous disorder with wide phenotypic spectrum including Kallmann syndrome (KS) with anosmia and normosmic idiopathic hypogonadotropic hypogonadism (nIHH).
- Over the last 20 years, significant progress has been made in the understanding of the molecular genetics of IGD. More than 30 different causative genes have been identified in several studies.
- FGFR1 mutations have been identified in about 3–10% of patients with

Molecular analysis of the FGFR1 gene

- Six novel FGFR1 mutations were identified in 6 patients. Three of 6 FGFR1 mutations were likely pathogenic, and the other three mutations were classified as a variant of uncertain significance.
- Two novel missense variant, p.Y339H and p.S681I, was predicted to be deleterious by PolyPhen-2 and SIFT.

Table 2. Novel FGFR1 mutations identified in studied patients

No.	Nucleotide change	Amino acid change	Intron/exon	ACMG/AMP guideline	Clinical diagnosis
1	c.1015T>C	p.Y339H	8	Likely pathogenic	nIHH
2	c.551dup	p.N185Kfs*16	5	Likely pathogenic	KS
3	c.630T>A	p.Y210*	6	Likely pathogenic	nIHH
4	c.2042G>T	p.S681I	15	Uncertain significance	nIHH
5	c.1855-1G>A	Splice site	13	Uncertain significance	nIHH
6	c.1663+2T>G	Splice site	12	Uncertain significance	-

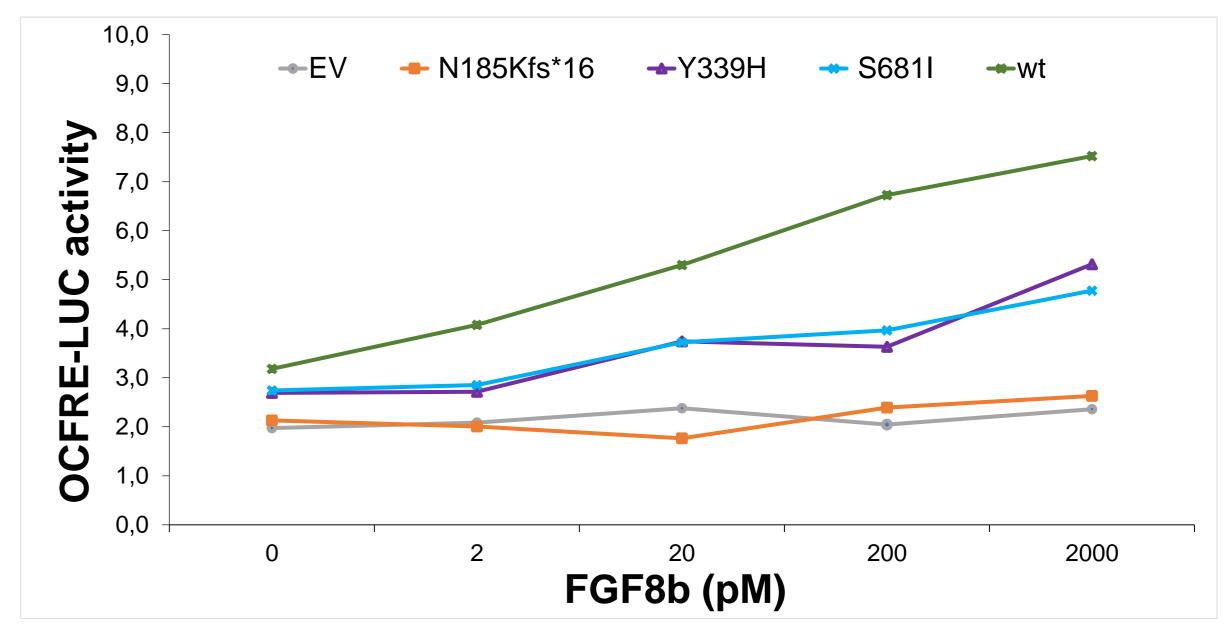
Kallmann syndrome or nIHH.

Objectives

 This study was performed to investigate the clinical phenotypes and functional characteristics of FGFR1 mutations in patients with IGD.

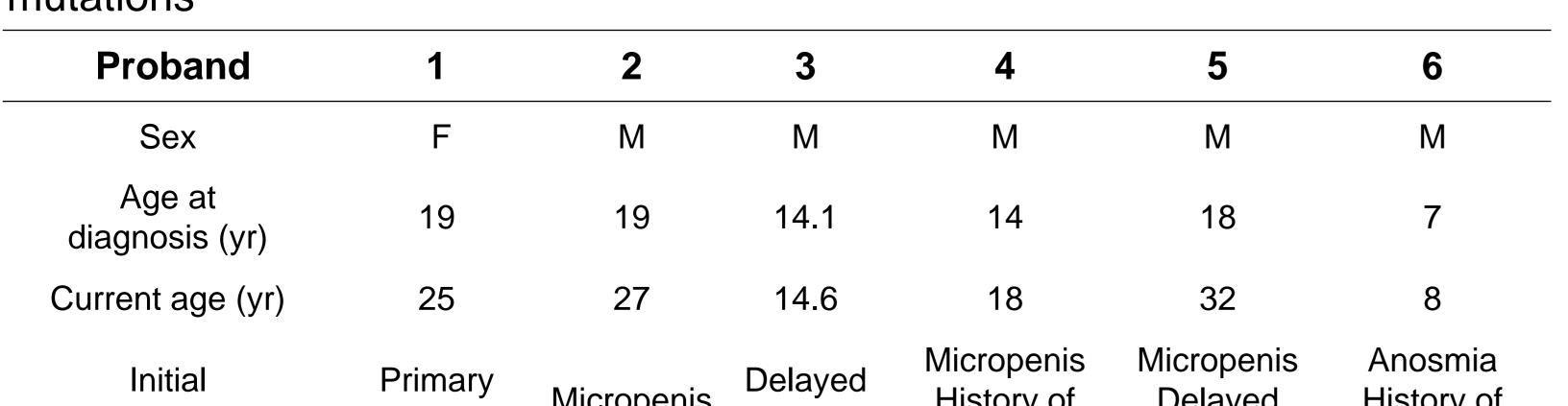
Methods

- Molecular analysis was performed in 49 subjects with IGD using targeted gene panel for 69 genes (n = 34) or whole exome sequencing (n = 15).
- The impact of the identified mutations on FGFR1 function was assessed by using *in silico* prediction program, and then confirmed by *in vitro* functional studies.
- Clinical characteristics and hormonal findings of the patients with FGFR1 mutations were obtained by retrospective chart review.


Results

Clinical characteristics of patients with FGFR1 mutations

Six novel heterozygous mutations in FGFR1 were identified in 6 unrelated patients (12.2%): p.Y210*, p.Y339H, p.S681I, c.1855-1G>A,


In vitro functional analysis of the novel FGFR1 mutations

- Wild-type (WT) and FGFR1 mutants (p.Y339H, p.N185Kfs*16 and p.S681I) were transiently transfected into L6 myoblasts with an FGFR1-responsive osteocalcin promoter luciferase construct.
- FGF8 treatment of WT FGFR1 induced an increase in LUC reporter gene expression. The maximum receptor signaling capacity of the FGFR1 mutants were reduced compared to WT.

c.1663+2T>G, and c.551dup (p.N185Kfs*16).

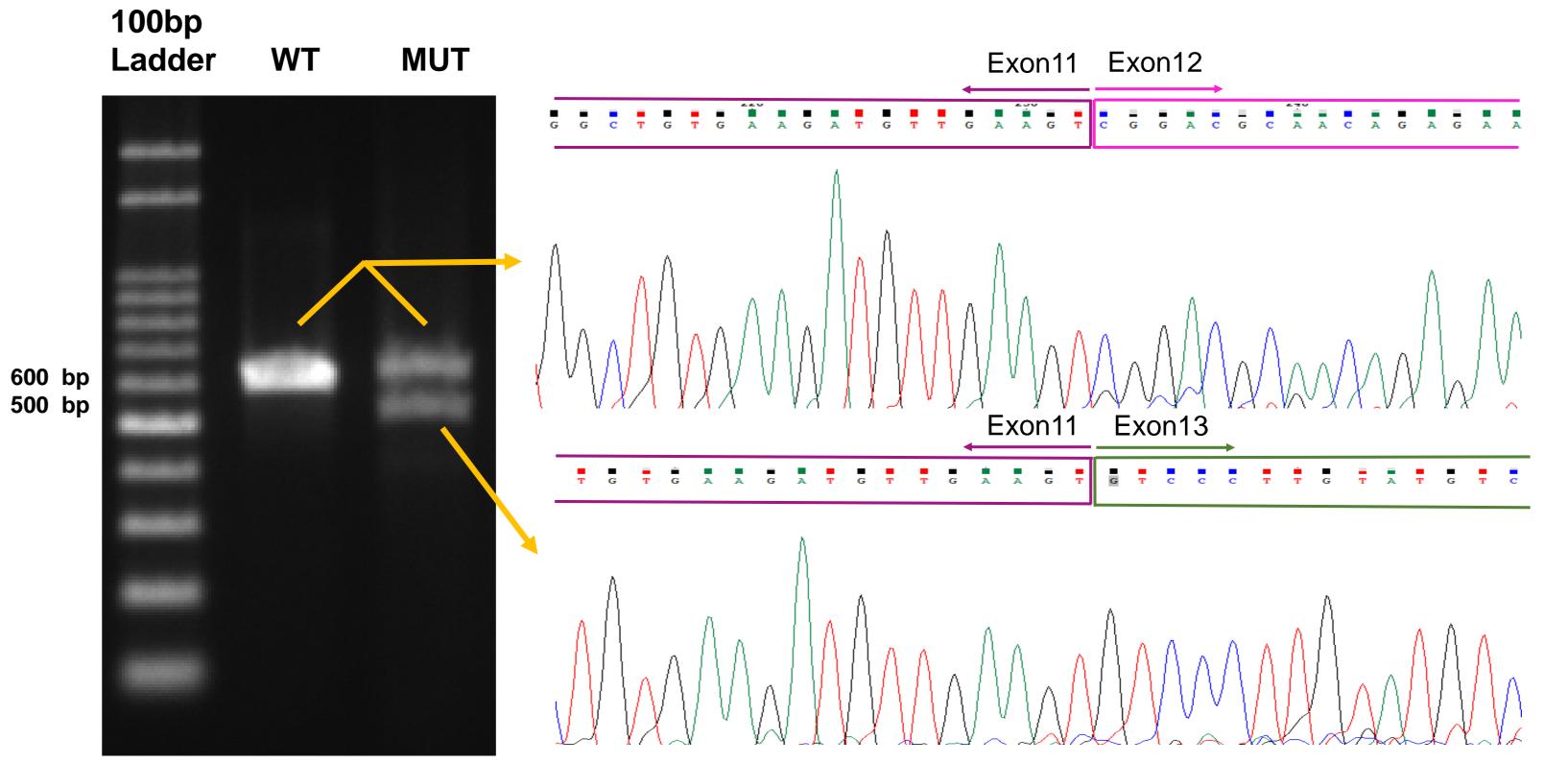

- The clinical phenotypes of these patients were diverse, ranging from KS (N = 1), nIHH (N = 4), and a prepubertal male with anosmia.
- Four male patients had history of undescended testis, micropenis, or delayed puberty, while a female subject presented with primary amenorrhea at the age of 19 years.
- A 7-year-old male presented with anosmia and his brain magnetic resonance imaging (MRI) revealed the absence of olfactory bulbs. He is currently 8 years old without any signs of puberty.
- Subject 1 and 5 had osteoporosis and finger syndactyly, respectively.

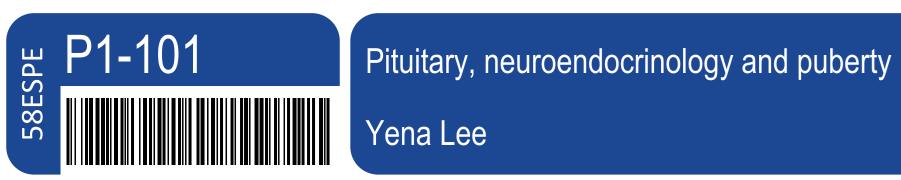
Table 1. Clinical characteristics and laboratory findings of patients with *FGFR1* mutations

Fig 1. Transcription reporter activity of WT and mutants *FGFR1*. Luciferase reporter assay showing reduced signal capacity of mutant *FGFR1*

 Total RNA was extracted from peripheral blood using a PAXgene blood RNA kit and RT-PCR was performed in the patients with a c.1663+2T>G mutation, resulting a skipping of exon 12.

Presentation		Micropenis	puberty	History of Cryptorchidism	Delayed puberty	History of Cryptorchidism
Basal	1.9	1.1	0.85	0.8	< 2	0.07
Peak	ND	1.6	5.6	1.6	2.8	0.74
Basal	1.0	0.72	1.0	0.1	< 2	< 0.3
Peak	ND	2.2	5.2	2.6	4.0	10.56
e (ng/mL) l (pg/mL)	10.0	0.36	0.27	0.11	0.4	0.11
mia	-	+	-	-	-	+
Brain MRI		Small olfactory bulbs	ND	Normal	Normal	Absence of olfactory bulbs
Diagnosis		KS	nIHH	nIHH	nIHH	Prepubertal state
ndings	Osteoporosis	-	-	-	Finger Syndactyly	-
	Basal Peak Basal Peak e (ng/mL) I (pg/mL) mia MRI osis	Basal1.9PeakNDBasal1.0PeakNDe (ng/mL)10.0i (pg/mL)10.0mia-MRINDosisnIHH	tationamenormeaBasal1.9PeakNDBasal1.00.72PeakND2.2e (ng/mL)10.00.36mia-+MRINDNDSmall olfactory bulbsosisnIHHKS	tationamenormeaPubertyBasal1.91.10.85PeakND1.65.6Basal1.00.721.0PeakND2.25.2e (ng/mL)10.00.360.27mia-+-MRINDSmall olfactory bulbsNDosisnIHHKSnIHH	tationamenormeapubertyCryptorchidismBasal1.91.10.850.8PeakND1.65.61.6Basal1.00.721.00.1PeakND2.25.22.6e (ng/mL)10.00.360.270.11mia-+MRINDSmall olfactory bulbsNDNormalosisnIHHKSnIHHnIHH	tationamenormeaPubertyCryptorchidismpubertyBasal1.91.10.850.8<2

LH; Luteinizing hormone, FSH; Follicle-stimulating hormone, ND; Not done, nIHH; normosmic idiopathic hypogonadism, KS; Kallmann syndrome


Fig 2. PCR analysis and cDNA sequencing of *FGFR1* revealed the skipping of exon 12 in a prepubertal male patient caused by the intronic c.1663+2T>G mutation

Conclusions

- This study identified six novel mutations in FGFR1, which account for 12.2% of causative gene for KS and nIHH.
- Probands carrying an FGFR1 mutation displayed a wide phenotypic spectrum ranging from KS to anosmia. A prepubertal male with anosmia should be followed up to assess pubertal development.

Disclosure statement

The authors have nothing to disclose.

