Clinical and genetic characteristics of eleven Korean patients with hypochondroplasia and outcomes of growth hormone therapy Min-Sun Kim¹, Minji Im¹, Hyojung Park¹, Mi Jung Park², Shin Hye Kim², Sung Yoon Cho¹, Dong-Kyu Jin¹ ¹Department of Pediatrics; Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea ²Department of Pediatrics; Inje University Sanggye Paik Hospital #### Introduction # Hypochondroplasia(HCH) A genetic disorder characterized by disproportionately short-limbe dwarfism Profound shortening of the proximal limbs (rhizomelic) Prevalence is estimated at around 1 in 33,000. Caused by mutation in the FGFR3 Sporadically with no apparent family history Familial with Autosomal dominant inheritance. ## **General features of HCH** Short-limb dwarfism identifiable during childhood Average adult height: 145-165 cm for males, 133-151 cm for female Macrocephaly, Mild frontal bossing Normal/mild midface hypoplasia Spine: Variable lumbar lordosis, progressive narrowing of interpediculate distance in the lumbar vertebrate Pelvis: short, squared ilia Limbs: shortened limbs, short tubular bones with mild metaphyseal flare, limited extension at elbows, genu varum, bowleg #### Method A Retrospective chart review. Duration: January 2010 ~ August 2018 Clinical data were obtained from the medical records of fourteen patients with HCH from ten unrelated families. Patients with HCH confirmed by *FGFR3* mutation anlaysis. The FGFR3 mutational status was studied by FGFR3 whole exome sequencing. ## Results ### Clinical data of HCH patients | | Proband/Sibling | Parent | | | |-------------------------|-----------------------|----------------------|--|--| | Number of patients | 11 | 3 | | | | Median Age at diagnosis | 106 months | 461 months | | | | Sex | 6 Males / 5 Females | 3 Females | | | | Median F/U duration | 46.5 months | - | | | | Initial Height(cm) | 112.72 \pm 15.39 cm | 147.07 ± 2.66 cm | | | | Height SDS | -2.17 ± 0.77 | -2.79 ± 0.53 | | | | | | | | | | Family | Proband/Sibling | Parent | Total | | | | |---|----------------------|-------------|--------------|--|--|--| | • brachydactyly | 63.6% [7/11] | 66.7% [2/3] | 64.3% [9/14] | | | | | • Rhizomelia | 45.5 % [5/11] | 0 | 35.7% [5/14] | | | | | • genu varum | 36.4 % [4/11] | 33.3% [1/3] | 35.7% [5/14] | | | | | • lumbar lordosis | 18.2% [2/11] | 0 | 14.3% [2/14] | | | | | limitation of elbow extension | 0 | 0 | 0 | | | | | Generalized laxity | 0 | 0 | 0 | | | | | • Scoliosis | 0 | 0 | 0 | | | | | Relative macrocephaly | 36.4 % [4/11] | 0 | 28.6%[4/14] | | | | | mental retardation | 0 | 0 | 0 | | | | | Acanthosis nigricans | 9.1% [1/11] | 0 | 7.1% [1/14] | | | | | • failure of widening of anterior | 45.5 % [5/11] | 66.7% [2/3] | 50% [7/14] | | | | | lumbar interpedicular distance | 9.1% [1/11] | 0 | 7.1% [1/14] | | | | | • shortening of long bone | 0 | 0 | 0 | | | | | • long bone metaphyseal flaring | 0 | 0 | 0 | | | | | • short, broad femoral neck | 0 | 0 | 0 | | | | | • squared shortened ilia | 9.1%[1/11] | 33.3% [1/3] | 14.3%[2/14] | | | | | elongation of distal fibulaflattened acetabular roof | 0 | 0 | 0 | | | | | Family 🜟 | | F | 1 | F2 | F3 | F4 | | F5 | | F6 | F7 | F8 | F9 | F | 10 | |--|---------------|------------------------|----------------|-----------------------|-------------------------|------------------------|-------------------------|----------------|---------------------|-------------------------|-------------------------|------------------------|----------------------|-----------------------|-------------------| | Patient | | P1 | P2 | P3 | P4 | P5 | P6 | P 7 | P8 | P 9 | P10 | P11 | P12 | P13 | P14 | | Age at diagnosis (yr) | | 5.8 | 32 | 8.11 | 9.10 | 2.9 | 10.6 | 35.2 | 7.9 | 14.11 | 7.9 | 4.11 | 3 | 9.7 | 44.10 | | Sex | | M | F | F | F | F | M | F | M | M | M | F | F | M | F | | F/U duration (yr) | | 7.7 | - | 1.7 | 3.6 | 6 | 2.8 | - | - | 0.3 | 0.2 | 0.2 | 1.4 | 2.10 | 1.2 | | Initial Height(cm) Height SDS BMI | \Rightarrow | 94.7
-1.91
16.17 | 148.5
-2.51 | 120
-2.00
18.75 | 126.1
-1.66
18.24 | 118.9
-2.69
21.9 | 114.7
-2.10
17.18 | 138.7
-2.46 | 114.4
-2.15
- | 142.5
-3.89
28.66 | 108.2
-3.16
20.07 | 98.4
-1.63
16.73 | 87
-1.64
19.82 | 118
-1.56
19.68 | 144
-3.41
- | | brachydactyly | \rightarrow | + | + | + | + | + | + | + | + | + | - | = | - | - | - | | Rhizomelia | | - | - | + | + | - | - | - | - | - | + | + | + | - | - | | • genu varum | | - | - | - | - | - | + | + | + | - | - | + | + | - | - | | lumbar lordosis | | - | - | + | + | - | - | - | - | - | - | - | - | - | - | | limitation of elbow
extension | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Generalized laxity | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Scoliosis | | - | - | - | - | = | - | - | - | - | = | = | - | - | - | | Relative macrocephaly | / | - | - | + | + | - | - | - | - | + | - | + | - | - | - | | mental retardation | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Acanthosis nigricans | | - | - | - | - | - | - | - | - | - | - | - | + | - | - | | failure of widening of
anterior lumbar
interpedicular distance | | - | + | + | + | + | + | + | + | - | - | - | - | - | - | | shortening of long bor | ne | - | - | - | - | + | - | - | - | - | - | - | - | - | - | | long bone metaphysea
flaring | al | - | - | - | - | - | + | + | - | - | - | - | - | - | - | | short, broad femoral
neck | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | • squared shortened ilia | | _ | _ | _ | _ | - | _ | _ | _ | - | - | - | - | _ | - | | elongation of distal fibula | | - | - | - | - | - | + | + | ١. | - | - | - | - | - | - | | flattened acetabular ro | of | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ## FGFR3 mutation of patients with HCH | | | Familial/Sporadic | Nucleotide change | Amino-acid substitution | Domain | *: novel variant | |-----------|----------|-------------------|-------------------|-------------------------|--------|------------------| | Family 1 | P1
P2 | Familial | *c.615+38G>C | | | | | Family 2 | P3 | Sporadic | c.1950G>T | p.Lys650Asn | TK2 | | | Family 3 | P4 | Sporadic | c.1949A>C | p.Lys650Thr | TK2 | | | Family 4 | P5 | Sporadic | c.1620C>A | p.Asp540Lys | TK2 | ND | | | P6 | | | | | | | Family 5 | P7
P8 | Familial | *c.989C>T | p.Thr330lle | lg III | | | Family 6 | P9 | Sporadic | c.1620C>G | p.Asn540Lys | TK2 | | | Family 7 | P10 | Sporadic | c.1620C>A | p.Asn540Lys | TK2 | | | Family 8 | P11 | Sporadic | c.1620C>A | p.Asn540Lys | TK2 | | | Family 9 | P12 | Sporadic | c.1620C>A | p.Asn540Lys | TK2 | | | Family 10 | P13 | Familial | c.250C>T | p.Ser84Leu | lg l | | ### r-hGH treatment | | | | Р | 1 | | | | Р3 | | | F | 4 | | P13 | |-----------------------------------|-------------|--------------------|--------------------|---------------------|--------------------|--------------------|-----------------|-------------------|-------------------|---|-------------------|-------------------|-------------------|---------------------------------| | GH*2 ST | + | | | | | | | - | | | | + | | | | ^L result
(hGH peak) | | | Glucago
L-dopa | on) 2.73
a) 6.76 | | | | | | | | | | Dopamine) 5.29
Insulin) 7.45 | | IGF-1 | basal
40 | 1y
147.6 | 2y
138.9 | 3y
164.2 | 4y
250.5 | 5y
179.8 | В
223 | 1
201.9 | 2
510.9 | В | 1
496.3 | 2
550.3 | 3
585.5 | Basal 267.9 | | Dose
(IU/kg/wk) | 0.698 | 0.730 | 0.736 | 0.701 | 0.717 | 0.822 | | 1.049 | 1.022 | | 0.956 | 0.964 | 0.970 | | | Growth velocity (cm/yr) | | 6.86 | 5.5 | 5.3 | 4.5 | 5 | | 5.2 | 5.8 | | 6.47 | 6.5 | 3.2 | 8.1 | ## Discussion In this study, r-hGH treatment improves growth velocity compared to before r-hGH treatment. However, long-term data should be studied in chilid with HCH. Improvement of body disproportion should be studied in the further study. ## Conclusion It is difficult to diagnose HCH in early childhood because of **subtle clinical & radiographic findings**. Detailed investigations of radiologic features of HCH are important because of a mild or sometimes an absent phenotype. It is important to have **clinical suspicion**, if any changes in clinical and/or radiologic data consistent with HCH. Body disproportion and Family history could help the diagnosis. Whole exon sequencing of *FGFR3* gene is an useful study to diagnose with HCH that might be remain undiagnosed.