
# Relation of serum 25 hydroxy-vitamin D3 levels with body-mass index in pediatric patients

Paula Sol Ventura, Xavier Herrero, Zelmira Bosch, Anabella Grigolato; Romina Del Valle Rossi, Marisa Torres. Hospital de Nens de Barcelona. Division of Endocrinology

### Introduction

- Vitamin D is an essential prohormone for correct absorption of calcium in intestine and its deficiency is associated in children with rickets, a disease characterized by a lack of mineralization of bone and growing cartilage.
- The "classic" function of vitamin D is regulation of phosphocalcic metabolism.
- There is consensus that the dosage of the plasma level of the 25OH vitamin D (25(OH)D), is the one that best reflects the state of this vitamin in an individual, because this is the most stable metabolite with a longer half-life (2-3 weeks).
- There is currently no consensus regarding cut-off points to define "sufficiency", "insufficiency" and "deficiency".
  Childhood obesity has been associated with low circulating serum concentrations 25(OH)D, and vitamin D deficiency has been shown in the range of 17–57%, depending on how vitamin D deficiency is categorized.

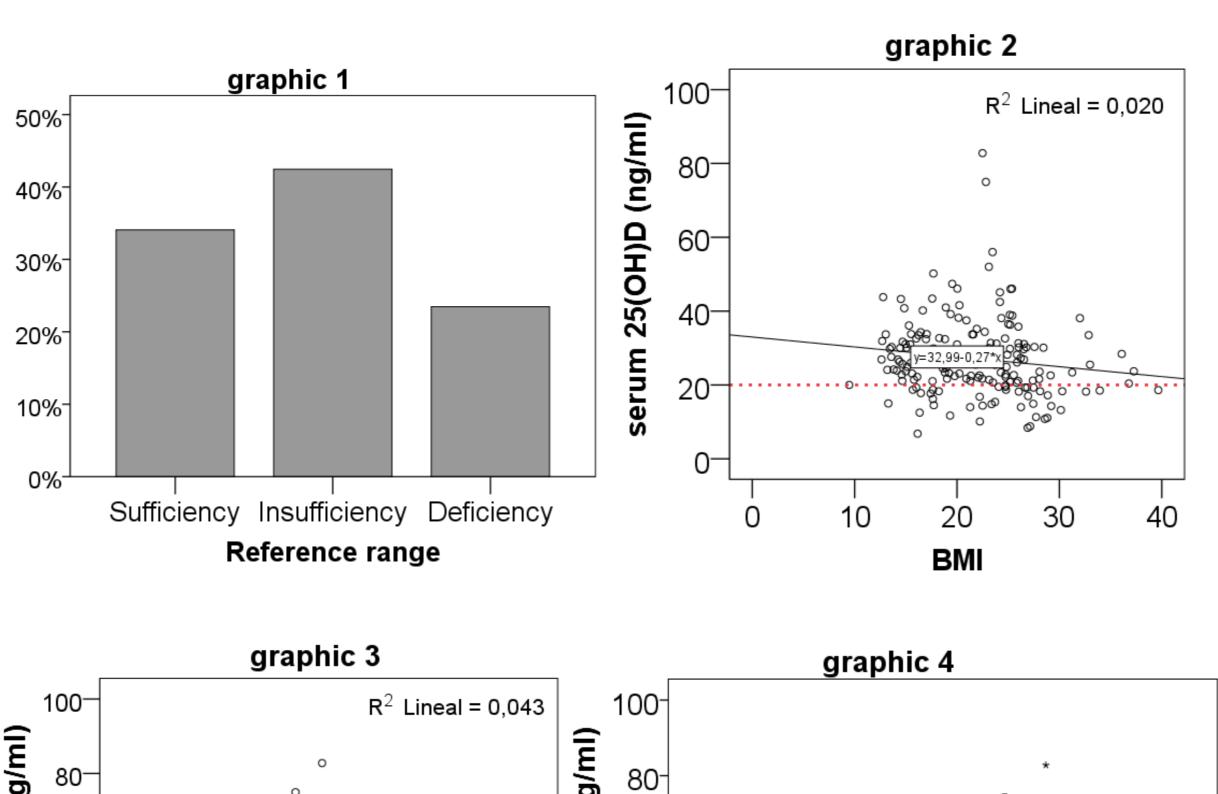
Vitamin D metabolism and its effects on phosphocalcic metabolism regulation



#### **Objectives**

 The aims of this study were to determine whether vitamin D deficiency is more prevalent among children and adolescents with body-mass index (BMI) increase compared to their normal weight peers and analyze serum levels of 25(OH)D according to age and month of extraction in pediatric patients in Barcelona, Spain.

## **Materials and methods**


- Retrospective study, clinical history review, CEIC approved
- Patients attended between June 2016 to June 2018, Barcelona, Spain (latitude 41°23.327' N).
- Inclusion criteria: age under 18 years, healthy with normal weight children visited by Ambulatory Pediatrics or overweight or obesity children visited by the Children's Endocrinology Service.
- Exclusion criteria: age above 18 years, intake of medications known to affect vitamin D
  metabolism as well as intake of supplementary vitamin D or calcium and diseases affecting
  calcium or vitamin D metabolism
- Variables: 25(OH)D (Chemiluminescent Immunoanalysis), age, BMI, month of extraction. Bibliography:
  - Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M, Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D Deficiency in Children and Its Management: Review of Current Knowledge and Recommendations. Pediatrics [Internet]. 2008 Aug 1 [cited 2019 May 31];122(2):398–417
     Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J Clin Endocrinol Metab [Internet]. 2011 [cited 2019 May 31];96(1):53–8.
     Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab [Internet]. 1911
     Braegger C, Campoy C, Colomb V, Decsi T, Domellof M, Fewtrell M, et al. Vitamin D in the Healthy European Paediatric Population CONSENSUS STATEMENT. JPGN [Internet]. 2013 [cited 2019 May 31];56(6).
     Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. 2016;

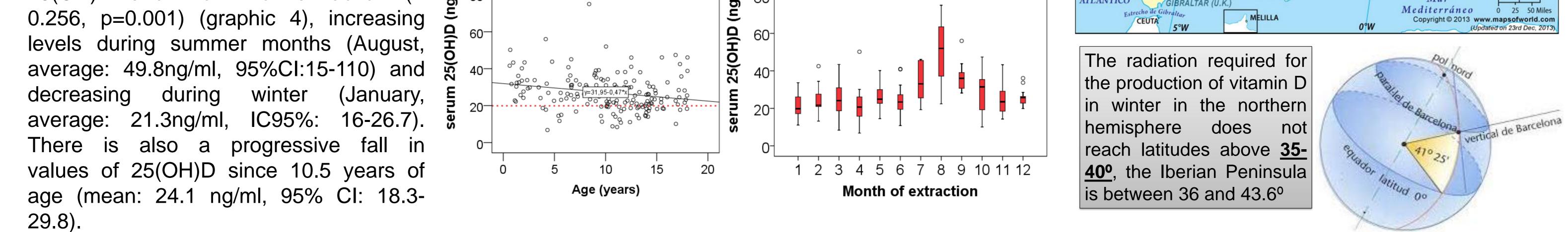


|                 |       | Endocrine<br>Society <sup>3</sup><br>(ng/mL) |       |       |
|-----------------|-------|----------------------------------------------|-------|-------|
| Deficiency      | >15   | < 20                                         | <10   | <12   |
| Insuffiency     | 16-20 | 21-30                                        | 11–20 | 12-20 |
| Preferred range | > 20  | > 30                                         | > 20  | >20   |
| Intoxication    | > 150 | > 150                                        |       | >100  |

>150 ng/ml

The medical records of 179 patients (female:96/male:83) were reviewed, mean age: 10.1 years (95%CI:9.4-10.7), 39.1% normal weight children and 60.9% overweight or obesity children. Of the total of 25(OH)D determinations obtained, we observed levels of sufficiency (≥30 ng/ml) in 34.1% patients, insufficiency in 42.5% (20-29 ng/ml) and deficiency in 23.5% (<20 ng/ml) (graphic 1)<sup>3</sup>. We detected significant negative relationship between 25(OH)D and BMI (rho: -0.211, p: 0.005) (graphic 2), and between 25(OH)D and age (r: -0.281; p: 0.000) (graphic 3); and significant positive relationship between 25(OH)D and month of extraction (r:




Results

Deficiency Preferred range Intoxication

20-100 ng/ml

<20 ng/ml





#### Conclusion

- These results suggest that there is an inverse association between BMI and 25(OH)D levels.
- Vitamin D decreases significantly during winter and from the beginning of puberty, moment of great vulnerability due to the fact that the
  maximum peak of corporal growth takes place.

