Severe hypercalcaemia after years on the ketogenic diet: A novel case report

Sandy JL¹, Cocca A¹, Cheung MS¹, Lumsden D², Sakka S¹

1. Paediatric Endocrine & Bone Department, Evelina London Children's Hospital 2. Paediatric Neurology Department, Evelina London Children's Hospital

What is known?

- An association between the ketogenic diet (KD) and hypercalcaemia has been seen in a case series of three children
- In these cases, the children experienced hypercalcaemia within 12 months of starting KD

What this poster adds?

- Severe hypercalcaemia may occur four years after commencement of the KD
- This may be refractory to standard management and require cessation of the KD

Case:

- 5.5 year old male referred for new onset severe hypercalcaemia <u>Background:</u>
- Infantile epileptic encephalopathy (Dynamin-1 gene mutation)
- Developmental delay
- Ketogenic diet started 4 years ago due to drug-resistant seizures
- Deep Brain Stimulator (DBS) inserted 18 months ago due to hyperkinetic movements
- Recurrent non-systemic DBS infections requiring intermittent long term intravenous antibiotics
- No recent changes to medications (anti-epileptic drugs and antibiotics) Presentation:
- New hypercalcaemia (4.07mmol/L) noted on bloods done due to nonspecific symptoms
- Subsequent admission revealed sepsis due to DBS infection and associated acute kidney injury
- Calcium had been normal 6 months prior to presentation
- Intermittent hypercalcaemia evident for past 12 months (max 2.83mmol/L)
- Hypercalcaemia initially resistant to hyperhydration and two pamindronate infusions but eventually improved
- Unable to cease hyperhydration and introduce normal dietary calcium until KD stopped, despite resolution of sepsis and kidney injury
- PTH and calcium normalised once KD weaned
- Subsequent symptomatic subacute fracture of L5 vertebrae confirmed on MRI and managed with zoledronic acid infusion

Investigation at presentation	Result	Normal Range
Calcium Corrected	4.07 🛧	2.19-2.69mmol/L
Phosphate	1.7	1.0-1.9mmol/L
Magnesium	0.9	0.65-1.05mmol/L
Alkaline Phosphatase	99 ₩	139-347IU/L
Parathyroid Hormone	6 \P	10-65ng/L
Vitamin D	84	>50nmol/L
PTH-related protein	<1.4	<1.4pmol/L
Urine Calcium: Creatinine Ratio	1.3 ↑	0.05-0.60
Vitamin B6	70.1	35.2-110.1nmol/L
1,25 Vitamin D	24 ₩	48-192pmol/L
Creatinine	73 ↑	24-45umol/L
ACE	40	<91 U/L
Tspot	Negative	
DEXA scan	Low bone mineral density Lumbar spine Z score -2.7 Whole boy less head Z score -0.8	
Chest/hand/wrist X-rays	Low bone mineral density	
Renal Ultrasound	Bilateral nephrocalcinosis	
Full Blood Count		
Thyroid Function Tests	Normal	

Discussion and proposed mechanism

- The **ketogenic diet** has been shown to **increase urinary calcium:creatinine ratio** and **reduce bone mineral density**, potentially leading to complications such as **fractures** and **renal calculi**
- Proposed mechanisms for the chronic reduction of bone mineral density include **impairment of osteoblastic deposition of bone** with relative **preservation of bone resorption**
- Intermittent acidosis, which can occur with the ketogenic diet, may increase urinary calcium excretion due to increased bone mineral resorption. This results in compensatory increased urinary calcium excretion
- Hypercalcaemia may occur when there is a reduction in renal capacity to excrete excess calcium, such as in acute kidney injury

Conclusions:

- There is a risk of severe hypercalcaemia when on the ketogenic diet, even after several years
- This can be very difficult to manage and may not resolve until the ketogenic diet is ceased
- Hypercalcaemia may lead to complications such as nephrocalcinosis, and long term use of ketogenic diet can contribute to risk of fractures
- The risk of hypercalcaemia is greater when patients have a reduced renal capacity to excrete calcium

Reference: Hawkes CP, Levine MA. Ketotic hypercalcemia: a case series and description of a novel entity. J Clin Endocrinol Metab. 2014;99(5):1531-1536. doi:10.1210/jc.2013-4275

Electrolytes

