
59ESPE

Pr
es

en
te

d
at

:

Tissue sensitivity to glucocorticoids is 

characterized by significant inter-individual 

variation in terms of therapeutic response 

and susceptibility to several stress-related 

disorders (1, 2). Proteomics approaches, 

combined with appropriate bioinformatics 

analysis, offer a comprehensive 

description of molecular phenotypes with 

clear links to human disease 

pathophysiology (3-5).

To investigate the usefulness                      

of plasma proteomics in identifying              

a proteomic signature that could distinguish 

glucocorticoid resistant from     

glucocorticoid sensitive subjects              

and provide clues of the underlying 

physiological differences. 

One hundred one (n=101) healthy volunteers 

were given a very low dose (0.25mg) of 

dexamethasone at midnight, and were polarized 

into the 10% most sensitive (S) and 10% most 

resistant (R) according to the 08:00h serum 

cortisol concentrations the following morning. 

One month later, DNA was isolated from 

peripheral blood mononuclear cells, and plasma 

samples were collected.

To identify any genetic defects in the NR3C1 

gene, the protein-coding sequences and the 

intron-exon junctions of the NR3C1 gene were 

PCR-amplified and sequenced.

The proteomic profile of plasma samples was 

determined using LC-MS/MS.

A proteomic profile indicating erythrocyte gas 

exchange and platelet activation was observed in 

the S compared to the R group, suggesting a state 

of the organism that is more capable to respond to 

stressful stimuli. 

Our findings also indicate that a proteomics 

signature may differentiate the most glucocorticoid 

resistant from the most glucocorticoid sensitive 

subjects, and may be useful in clinical practice. In 

addition, it may provide clues of the underlying 

molecular mechanisms of the chronic stress-related 

diseases, including myocardial infarction, stroke 

and Alzheimer’s disease.
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Clinical characteristics, biochemical and 

endocrinological parameters of the 

participants

The 11 participants (10% of the cohort) with 

the lowest cortisol concentrations and the 11 

participants with the highest cortisol 

concentration were selected for further 

analysis as the most glucocorticoid sensitive 

(S) and most glucocorticoid resistant (R), 

respectively, of the group; [(mean serum 

cortisol concentrations ± SD: 34.4 ± 15 nmol/L 

in the S participants vs. 622.4 ± 93.7 nmol/L in 

the R participants, p <0.001); (mean plasma 

ACTH concentrations ± SD: 2.8 ± 2.4 pg/mL in 

the S participants vs. 31.6 ± 10.6 pg/mL in the 

R participants, p <0.001)]. The rest 

endocrinological and biochemical findings did 

not show any statistically significant 

differences.

NR3C1 gene sequencing revealed no 

polymorphisms or mutations in the 22 

subjects

No genetic defects or polymorphisms were 

detected in the NR3C1 gene of the 22 

subjects.

Plasma Proteomics in Healthy Subjects with Differences in Tissue 

Glucocorticoid Sensitivity Identifies a Novel Proteomic Signature
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Proteomics Analysis
In total, 2737 proteins were identified and quantified in at least one of the analyzed samples. After selecting 

those proteins with presence in at least 35% of the samples in one of the two groups (n = 466 features),

significant proteins were further defined as the subset with a fold change greater than 1.5 (or less than 0.67). 

This counted for 66 proteins with higher abundance in the resistant and 110 proteins with higher abundance in 

the hypersensitive group (Figure 1). Among them, there were 21 proteins being present exclusively in only 

one of the two groups (Table 1). 

In order to predict response to cortisol prior to administration, a random forest classifier was developed based 

on the proteomics data. After tuning for optimal parameters, the classifier showed promising results in correctly 

assigning random partitions of the training data to the studied groups, achieving an overall accuracy score of 

0.86. The individual importance of each protein in the model was evaluated in terms of the Mean Decrease in 

Accuracy, the Mean Decrease in Gini index and the mean minimal depth. Out of the 14 proteins utilized for 

training, APOA4 and GSN were the most important variables in the classification (Figure 2).

A significant number of proteins with higher abundance in the sensitive group are involved in platelet activation 

and aggregation. The deregulated biological pathways in the sensitive group are presented in (Τable 2).

Protein Description Present 

KIF28P Kinesin-like protein KIF28P Only in resistant

MRPS34 28S ribosomal protein S34, mitochondrial Only in resistant

PRPF8 Pre-mRNA-processing-splicing factor 8 Only in resistant

MYH11 Myosin-11 Only in resistant

MLH1 DNA mismatch repair protein Mlh1 Only in resistant

ARHGAP21 Rho GTPase-activating protein 21 Only in resistant

EMC10 ER membrane protein complex subunit 10 Only in resistant

ZSWIM9 Uncharacterized protein ZSWIM9 Only in resistant

FANCB Fanconi anemia group B protein Only in resistant

CDADC1 Cytidine and dCMP deaminase domain-containing protein 1 Only in resistant

ACSS3

Acyl-CoA synthetase short-chain family member 3, 

mitochondrial Only in resistant

IGHV3-66 Immunoglobulin heavy variable 3-66 Only in hypersensitive

IGLV5-39 Immunoglobulin lambda variable 5-39 Only in hypersensitive

LCP1 Plastin-2 Only in hypersensitive

DOCK4 Dedicator of cytokinesis protein 4 Only in hypersensitive

SLC38A3 Sodium-coupled neutral amino acid transporter 3 Only in hypersensitive

RTN4 Reticulon-4 Only in hypersensitive

CFAP97 Cilia- and flagella-associated protein 97 Only in hypersensitive

POLK DNA polymerase kappa Only in hypersensitive

ANKRD50 Ankyrin repeat domain-containing protein 50 Only in hypersensitive

Figure 1: Heatmap (left) and Volcano plot (right) of proteins quantified in hypersensitive and 
resistant groups. Heatmap shows the abundance of proteins passing the ±0.585 log2 fold 
change threshold, in the two groups. Volcano plot illustrates the log2 fold change (x axis) as a 
function of the Mann-Whitney p value (y axis). Red color marks proteins passing the 1.5 (or 
0.67) fold change (equivalent to ±0.585 in the logarithmic scale). 

Table 1: Proteins identified in only one of the two groups

Figure 2: Variable importance for the 14 proteins used to train the random 
forest classifier so as to distinguish between responders (hypersensitive) 
and non-responders (resistant) to cortisol. Multiway importance plots 
depicting the mean decrease in accuracy as a function of the mean minimal 
depth (left) and of the mean decrease in the Gini index (right). 

Table 2: Deregulated pathways for the hypersensitive group. P value 

corresponds to the Benjamini-Hochberg correction.

Reactome pathway P value

% Associated 

Genes Associated Genes Found

O2/CO2 exchange in 

erythrocytes 0.000194 23.1 [CA1, CA2, HBA1]

G-protein mediated events 0.004559 5.5 [CAMKK2, ITPR1, ITPR2]

PLC beta mediated events 0.004452 5.6 [CAMKK2, ITPR1, ITPR2]

DAG and IP3 signaling 0.002614 7.1 [CAMKK2, ITPR1, ITPR2]

Signaling by VEGF 0.000892 4.7 [CDH5, CRK, ITGB3, ITPR1, ITPR2]

Platelet activation, 

signaling and aggregation 1.5E-06 4.6

[CRK, F8, FLNA, ITGB3, ITPR1, ITPR2, 

PFN1, PPBP, QSOX1, RARRES2, 

TUBA4A, VCL]

Fcgamma receptor (FCGR) 

dependent phagocytosis 0.002295 4.7 [CRK, FCGR3A, ITPR1, ITPR2]

Platelet degranulation 1.18E-06 7.0

[F8, FLNA, ITGB3, PFN1, PPBP, QSOX1, 

RARRES2, TUBA4A, VCL]

Role of phospholipids in 

phagocytosis 0.000858 12.0 [FCGR3A, ITPR1, ITPR2]
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