Safety and effectiveness of paediatric growth hormone therapy: Results from the full cohort in KIGS

M Maghnie¹, MB Ranke², ME Geffner³, E Vlachopapadopoulou⁴, HG Dörr⁵; K Albertsson-Wikland⁶, L Ibáñez^{7,8}, M Carlsson⁹, W Cutfield¹⁰, R Rooman¹¹, R Gomez¹², MP Wajnrajch^{9,13}, A Linglart^{14,15}, R Stawerska^{16,17}, M Polak¹⁸, A Grimberg¹⁹

¹Department of Pediatrics, IRCCS Giannina Gaslini, University of Erlangen, University of Benova, Genova, Italy; ²Deaprtment of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, University of Erlangen, Genova, Italy; ²Deaprtment of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, University of Erlangen, Genova, Italy; ²Deaprtment of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Children's Hospital, Athens, Greece; ⁵Division of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, CA, USA; ⁴Department of Pediatric Endocrinology, University of Erlangen, Genova, Italy; ²Deaprtment of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, South and Development, Aglaia Kyriakou Children's Hospital, Athens, Greece; ⁵Division of Pediatrics, IRCCS Giannina, Genova, Italy; ²Deaprtment of Pediatrics, IRCCS Giannina, Genova, Italy; ³The Saban Research Institute, Children's Hospital, Italy; ⁴Deaprtment of Pediatrics, IRCCS Giannina, Genova, Italy; ⁴Deaprtment, Italy; Erlangen, Germany; ⁶Department of Physiology, Endocrinology, Institute of Neuroscience and Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Auckland, Spain; ⁹Rare Disease, Biopharmaceuticals, Pfizer, New York, NY, USA; ¹⁰Liggins Institute, University of Auckland, Spain; ⁹Rare Disease, Biopharmaceuticals, Pfizer, New York, NY, USA; ¹⁰Liggins Institute, University of Auckland, Spain; ⁹Rare Disease, Biopharmaceuticals, Pfizer, New York, NY, USA; ¹⁰Liggins Institute, University of Auckland, Auckland, Spain; ⁹Rare Disease, Biopharmaceuticals, Pfizer, New York, NY, USA; ¹⁰Liggins Institute, University of Auckland, Spain; ⁹Rare Disease, Biopharmaceuticals, Pfizer, New York, NY, USA; ¹⁰Liggins Institute, University of Auckland, Spain; ⁹Rare Disease, Biopharmaceuticals, Pfizer, New York, NY, USA; ¹⁰Liggins Institute, University of Auckland, Spain; ⁹Rare Disease, Biopharmaceuticals, Pfizer, New York, NY, USA; ¹⁰Liggins, Institute, University of Auckland, Spain; ⁹Rare Disease, Biopharmaceuticals, Pfizer, New York, NY, USA; ¹⁰Liggins, Institute, University of Auckland, Auckland New Zealand; ¹¹PendoCon, Putte, Belgium; ¹²European Medical Affairs, Pfizer, Brussels, Belgium; ¹⁴Department of Pediatrics, New York, NY, USA; ¹⁴Department of Pediatrics, New York, NY, USA; ¹⁴Department of Pediatrics, New York, NY, USA; ¹⁴Department of Pediatrics, New York University Langone Medical Center, New York, NY, USA; ¹⁴Department of Pediatrics, New York, NY, ¹⁴Department of Pediatrics, New York, NY, ¹⁴Department of Pediatrics, New York, NY, ¹⁴Department of Pediatrics, NW, ¹⁴Department of Ped ¹⁶Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland; ¹⁸University of Lodz, Poland; ¹⁷Department of Pediatric Endocrinology, Medical University of Lodz, Poland; ¹⁸University of Lodz, Poland; ¹⁹Division of Pediatric Endocrinology and Diabetes, Poland; ¹⁹Division of Pediatric Endocrinology and Polatric Endocrinol

Introduction

- Recombinant human growth hormone (rhGH) is indicated to treat children with growth disorders, including growth hormone deficiency (GHD), Prader-Willi syndrome (PWS), children born small for gestational age (SGA), Turner syndrome (TS), Noonan syndrome, idiopathic short stature (ISS), chronic renal insufficiency (CRI), and short stature homeobox-containing gene (SHOX) deficiency
- Treatment with rhGH is generally safe,^{1,2} but concerns remain about potential longterm effects of rhGH on risks for stroke, cancer, and mortality³⁻⁵
- KIGS (Kabi/Pfizer International Growth Database; 1987-2012), first established as a survey, evolved into a large, international, observational study to evaluate long-term safety and treatment outcomes of paediatric rhGH (Genotropin[®] [somatropin]; Pfizer, NY) in real-world, clinical settings

Objective

• To analyse and summarise accumulated safety and efficacy data from all rhGH-treated patients until KIGS close in 2012

Methods

- Children with growth disorders treated with rhGH (Genotropin[®] [somatropin]; Pfizer, NY) were enroled
- Safety outcomes included all adverse events (AEs) and serious AEs (SAEs); causal relationships of AEs with rhGH treatment were assessed by the investigators
- Auxological data, including height (Ht), Ht standard deviation score (Ht-SDS), Ht velocity (HtV), HtV-SDS, difference between Ht-SDS and mid-parental Ht-SDS (Diff-SDS), weight, and body mass index, were collected for efficacy analysis
- Definitions
- SDS for Ht: calculated according to Prader references⁶
- Start of puberty: breast Tanner II (girls), testicular volume 4 mL (boys)^{7,8}
- Near-adult height (NAH): HtV <2 cm/yr during the last year and age >14 yr (girls) or >16 yr (boys)

Results

Patient Characteristics

Safety cohort

- A total of 83,803 patients were treated with rhGH, most frequently for idiopathic GHD (IGHD; 47%), for a median duration of 2.7 years (total 277,267 patient-years [PY]) and median follow up of 3.1 years (total 322,576 PY)
- Median age of patients at treatment start was 11 years; 58% of patients were male and most were Caucasian (70%) (Table 1)
- Median initial rhGH dose was 0.17 to 0.33 mg/kg/wk for different indications (Table 1)

Efficacy cohort

- Efficacy was evaluated in 55,284 patients who had ≥1 year of treatment and completed height assessment at year 1
- Median age at rhGH start was 9.8 years, and initial rhGH dose varied by indication (Table 1)

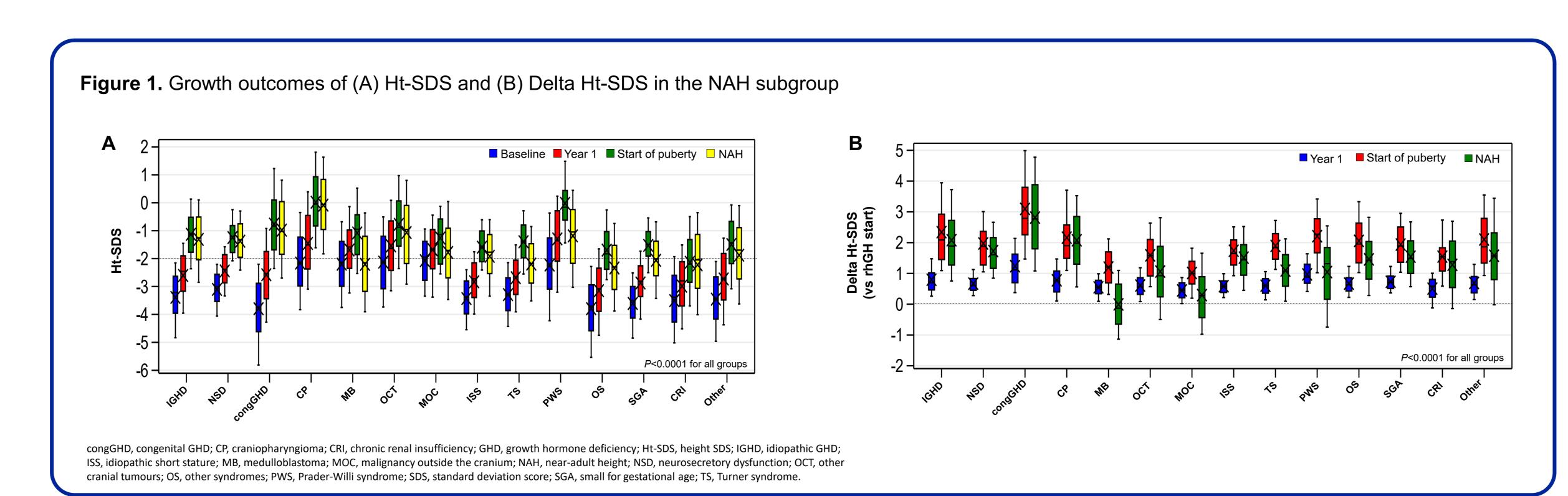
Safety

Adverse events (Table 2)

- 23,163 AEs were reported in 14.4% of patients (treatment-related in 3.1%); the overall incidence rate of all-causality AEs was 94.2 per 1000 PY
- 3981 SAEs occurred in 3.7% of patients (treatment-related in 0.7%)
- Most frequently reported AEs and SAEs are shown in Table 2
- 1030 (1.2%) patients discontinued rhGH due to SAEs (345 [0.4%] were treatmentrelated SAEs)

Table 1. Demographic characteristics of the safety and efficacy cohorts

	Safety (N	I=83,803)	Efficacy (N=55,284)		
Sex, n (%)					
Male	48,620 (58.0)		31,943 (57.8)		
Female	35,183 (42.0)		23,341 (42.2)		
Race/Ethnicity, n (%)					
Asian	12,082 (14.4)		8470 (15.3)		
Black	943 (1.1)		540 (1.0)		
Caucasian	59,022 (70.4)		39,741 (71.9)		
Hispanic	1989 (2.4)		937 (1.7)		
Other	2363 (2.8)		1496 (2.7)		
Unknown	7404 (8.8)		4100 (7.4)		
Age at rhGH start (yr) ^a	10.7 (4.6, 14.9)		9.8 (4.2, 14.1)		
Years of rhGH treatment ^a	2.7 (0.3, 7.2)		3.5 (1.4, 7.9)		
Years of follow up ^a	3.1 (0.5, 8.2)		4.0 (1.6, 9.0)		
Diagnosis	n (%)	Initial rhGH dose (mg/kg/wk)ª	n (%)	Initial rhGH dose (mg/kg/wk)ª	
Idiopathic GHD	39,298 (46.9)	0.20 (0.12, 0.31)	25,810 (46.7)	0.21 (0.15, 0.31)	
Neurosecretory dysfunction	2187 (2.6)	0.22 (0.14, 0.32)	1537 (2.8)	0.22 (0.16, 0.33)	
Congenital GHD	3323 (4.0)	0.21 (0.12, 0.32)	2189 (4.0)	0.22 (0.15, 0.32)	
Craniopharyngioma	1381 (1.6)	0.17 (0.08, 0.26)	965 (1.7)	0.17 (0.11, 0.26)	
Medulloblastoma	998 (1.2)	0.20 (0.11, 0.29)	703 (1.3)	0.20 (0.14, 0.29)	
Other cranial tumours	1750 (2.1)	0.18 (0.10, 0.28)	1209 (2.2)	0.18 (0.12, 0.28)	
Extracranial malignancy	940 (1.1)	0.20 (0.11, 0.30)	680 (1.2)	0.21 (0.14, 0.29)	
Idiopathic short stature	6867 (8.2)	0.21 (0.13, 0.35)	4336 (7.8)	0.20 (0.16, 0.34)	
Turner syndrome	7714 (9.2)	0.30 (0.16, 0.38)	5580 (10.1)	0.30 (0.18, 0.38)	
Prader-Willi syndrome	2338 (2.8)	0.22 (0.04, 0.30)	1501 (2.7)	0.23 (0.14, 0.31)	
Other syndromes	2602 (3.1)	0.25 (0.14, 0.38)	1801 (3.3)	0.25 (0.16, 0.39)	
Small for gestational age	7936 (9.5)	0.26 (0.13, 0.44)	4892 (8.8)	0.27 (0.19, 0.45)	
Chronic renal insufficiency	2399 (2.9)	0.33 (0.15, 0.39)	1514 (2.7)	0.33 (0.19, 0.39)	
Other causes	4070 (4.9)	0.22 (0.12, 0.34)	2567 (4.6)	0.23 (0.15, 0.35)	


rhGH, recombinant human growth hormone; GHD, growth hormone deficiency. ^aPresented as median (10th percentile, 90th percentile)

Patient characteristics associated with SAEs

- SAEs were more prevalent in those who had longer treatment (duration) ≥3 years vs <3 years, 4.7% vs 2.6%, *P*<0.0001)
- Frequency of SAEs was >10% among patients with diagnoses of craniopharyngioma (19.4%), CRI (13.9%), other cranial tumours (13.0%), and medulloblastoma (11.7%)

Mortality

- A total of 307 (0.4% of patients) deaths were reported; most frequently reported causes of death (in \geq 5 patients; by MedDRA preferred term) included neoplasm recurrence (n=19), recurrent cancer (n=17), craniopharyngioma (n=7), brain neoplasm (n=6), ill-defined disorder (n=6), cerebral hemorrhage (n=5), convulsion (n=5), glioblastoma (n=5), and pneumonia (n=5)
- Death occurred most frequently among patients who attained age 10 to <15 years while in KIGS (31.9%), 15 to <20 years (28.3%), and 5 to <10 years (18.2%); and among those with medulloblastoma (3.7%), other cranial tumours (2.5%), and extracranial malignancy (2.2%)

ESPE 2021 Online • September 22-26

Table 2. Frequency of AEs, SAEs, and treatment discontinuations (safety cohort N=83,803)

	All-causality, n (%)	Treatment-related, n (%)
Number of AEs ^a	23,163	3108
Patients with AEs	12,055 (14.4)	2638 (3.1)
AEs in ≥0.5% patients		
Headache	987 (1.2)	328 (0.4)
Scoliosis	514 (0.6)	162 (0.2)
Upper respiratory tract infection	474 (0.6)	4 (0.0)
Arthralgia	431 (0.5)	129 (0.2)
Pyrexia	425 (0.5)	13 (0.0)
Ear infection	408 (0.5)	3 (0.0)
Influenza	404 (0.5)	4 (0.0)
Nasopharyngitis	391 (0.5)	5 (0.0)
Number of SAEs ^a	3981	657
Patients with SAEs	3108 (3.7)	607 (0.7)
Patients with drug discontinuation ^b due to SAEs	1030 (1.2)	345 (0.4)
SAEs in ≥0.1% patients		
Craniopharyngioma recurrence	151 (0.2)	42 (0.1)
Neoplasm recurrence	99 (0.1)	23 (0.0)
Scoliosis	91 (0.1)	43 (0.1)
Recurrent cancer	91 (0.1)	26 (0.0)
Slipped capital femoral epiphysis	61 (0.1)	38 (0.0)
Convulsion	60 (0.1)	6 (0.0)
Death	59 (0.1)	5 (0.0)
Vomiting	47 (0.1)	3 (0.0)
Pneumonia	47 (0.1)	0 (0.0)
Headache	45 (0.1)	11 (0.0)
Epilepsy	43 (0.1)	4 (0.0)
Appendicitis	42 (0.1)	1 (0.0)

AE, adverse event; SAE, serious adverse event. ^aSummarised by the Medical Dictionary for Regulatory Activities (MedDRA) preferred term. Temporary, permanent, or delayed drug discontinuation

Efficacy

Efficacy during the first year (**Table 3**)

- Ht-SDS increased in all groups of the efficacy cohort after 1 year of treatment
- Among patients who remained prepubertal during the first year of rhGH exposure, median delta Ht-SDS ranged from 0.38 (extracranial malignancy) to 1.01 (congenital GHD)

Effect on NAH

- NAH was analysed in 7911 patients who had received rhGH for ≥5. years (≥2 years prepubertal treatment)
- Prepubertal Ht-SDS increased from baseline to puberty onset
- Median Ht-SDS at NAH was >-2 SD in patients with IGHD, neurosecretory dysfunction, congenital GHD, craniopharyngioma, other cranial tumours, extracranial malignancy, ISS, PWS, and other causes (Figure 1A)

Table 3. Growth outcomes at year 1 in the efficacy cohort

Diagnosis	Total		Prepubertal ^a		Pubertal ^b	
	n	Delta Ht-SDS	n	Delta Ht-SDS	n	Delta Ht-SDS
Idiopathic GHD	25,810	0.57 (0.11, 1.19)	13,882	0.66 (0.22, 1.40)	8365	0.48 (0.02, 0.96)
Neurosecretory dysfunction	1537	0.54 (0.09, 1.03)	800	0.63 (0.23, 1.12)	592	0.41 (-0.04, 0.89)
Congenital GHD	2189	0.89 (0.07, 2.04)	1740	1.01 (0.15, 2.22)	340	0.49 (-0.06, 1.14)
Craniopharyngioma	965	0.65 (-0.02, 1.43)	652	0.75 (0.07, 1.50)	255	0.52 (-0.12, 1.18)
Medulloblastoma	703	0.42 (-0.06, 0.88)	306	0.51 (0.07, 0.90)	334	0.32 (-0.14, 0.84)
Other cranial tumours	1209	0.49 (-0.15, 1.15)	512	0.59 (0.01, 1.25)	585	0.45 (-0.16, 1.08)
Extracranial malignancy	680	0.33 (-0.14, 0.83)	265	0.38 (-0.06, 0.86)	358	0.28 (-0.18 <i>,</i> 0.83)
Turner syndrome	5580	0.54 (0.01, 1.05)	4067	0.58 (0.05, 1.08)	1269	0.44 (-0.08, 0.93)
Prader-Willi syndrome	1501	0.83 (-0.03, 1.70)	1198	0.94 (0.12, 1.78)	224	0.30 (-0.29, 1.14)
Other syndromes	1801	0.57 (0.07, 1.16)	1290	0.63 (0.16, 1.30)	388	0.40 (-0.08, 0.87)
Idiopathic short stature	4336	0.48 (0.04, 0.93)	2125	0.55 (0.18, 1.00)	1443	0.39 (-0.10, 0.85)
Small for gestational age	4892	0.65 (0.19, 1.16)	3487	0.71 (0.30, 1.23)	997	0.48 (-0.03, 0.99)
Chronic renal insufficiency	1514	0.54 (-0.12, 1.24)	935	0.63 (-0.06, 1.41)	408	0.41 (-0.19, 1.04)
Other causes	2567	0.48	1416	0.56 (-0.01, 1.28)	874	0.36 (-0.14, 0.94)

during year 1

Conclusions

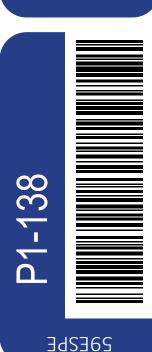
References

1970:45:13-23.

Disclosures

GHD, growth hormone deficiency; Ht-SDS, height standard deviation score (Prader reference). Data are presented as median (10th percentile, 90th percentile) unless noted otherwise. ^aPatients who remained prepubertal during year 1. ^bPatients who already reached puberty at treatment start or went into puberty

 From treatment start to NAH, median total Ht-SDS gain was >0 SD in all diagnostic groups, except for the medulloblastoma group (-0.13), and highest in patients with congenital GHD (2.77), craniopharyngioma (1.98), and IGHD (1.89) (Figure 1B). Median Diff-SDS also increased for all but the medulloblastoma group


 Data from the full cohort of KIGS patients (median 3.1 years follow up) [322,576 PY]) showed that rhGH was safe and well-tolerated in children with growth disorders as prescribed in real-world settings

 Treatment with rhGH was effective, as Ht-SDS increased from start of treatment to year 1, start of puberty, and NAH in most diagnostic groups Data compiled from KIGS, the largest and longest running global database of rhGH-treated children, complement results from clinical trials and other registries, and support the favorable benefit-risk profile of daily rhGH in paediatric patients

1. Allen DB. et al. Eur J Endocrinol. 2016:174:P1-9. 2. Stochholm K. et al. Clin Endocrinol (Oxf). 2018:88:515-528 **3.** Carel JC, et al. J Clin Endocrinol Metab. 2012;97:416-425. **4.** Poidvin A, et al. Neurology. 2014;83:780-786. 5. Swerdlow AJ, et al. J Clin Endocrinol Metab. 2017;102:1661-1672. 6. Prader A, et al. Helv Paediatr Acta Suppl. 1989;52:1-125. 7. Marshall WA, et al. Arch Dis Child. 1969;44:291-303. 8. Marshall WA, et al. Arch Dis Child.

MM has received research support from Pfizer, and Merck Serono: has consulted for BioMarin, Novo Nordisk, Pfizer, Merck Serono, Ferring, Ascendis, and Sandoz. MBR has received speaker fees from Sandoz, Merck, Mediagnost, and Pfizer. MEG has a research contract from Novo Nordisk; serves as a consultant for or on advisory boards for Adrenas, Daiichi Sankyo, Eton Pharmaceuticals, Novo Nordisk, Neurocrine Biosciences, Pfizer, and QED; is a member of a data safety monitoring board for Ascendis; and receives royalties from McGraw-Hill and UpToDate. EV has received research support from Ascendis, OPKO, and Pfizer. MC, MPW, and RG are employees of Pfizer. RR was a past member of the KIGS Strategic Advisory Board; and serves as a consultant for Pfizer. AL has received speaker fees from Sandoz. Novo Nordisk, Kiowakirin, Alexion and Pfizer, MP is on the advisory board for Pfizer France, Novo Nordisk, IPSEN Increlex Registry; has received grants from Pfizer, Novo Nordisk, Ipsen, Merck, Sandoz, Sanofi and French institutional public grants from ANR PHRC. AG has received a grant from Pfizer. RS received research support from Pfizer, OPKO, and Sandoz. HGD, KAW, LI, and WC have nothing to disclose. Editorial/medical writing support was provided by Hui Zhang, PhD and Kathleen Ohleth, PhD, CMPP of Precise Publications, LLC, and was funded by Pfizer.

