METABOLOMICS IN EARLY LIFE AND ASSOCIATION WITH BODY COMPOSITION AT AGE 2 YEARS

Inge A.L.P. van Beijsterveldt¹*, Stuart G. Snowden^{2,3}*, Pernille Neve Myers^{4,5}, Kirsten S. de Fluiter¹, Susanne Brix⁴, Ken K. Ong⁷, David B. Dunger⁸, Anita C.S. Hokken-Koelega¹*, Albert Koulman²* ¹Dept.of Pediatrics, Subdiv. of Endocrinology, Erasmus University Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands, ²Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, Cambridge, Vnited Kingdom, ³Dept. of Biological Sciences, Royal Holloway University of London, United Kingdom, ⁴Dept. of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark, ⁵Clinical-Microbiomics A/S, Copenhagen N, Denmark, ⁶Medical Research Council Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom, ⁷Dept.of Paediatrics, University of Cambridge, Cambridge, UK

* These authors contributed equally

BACKGROUND

Early life ≈ critical window for adiposity programming

Metabolic profile might contribute to adiposity programming

AIM

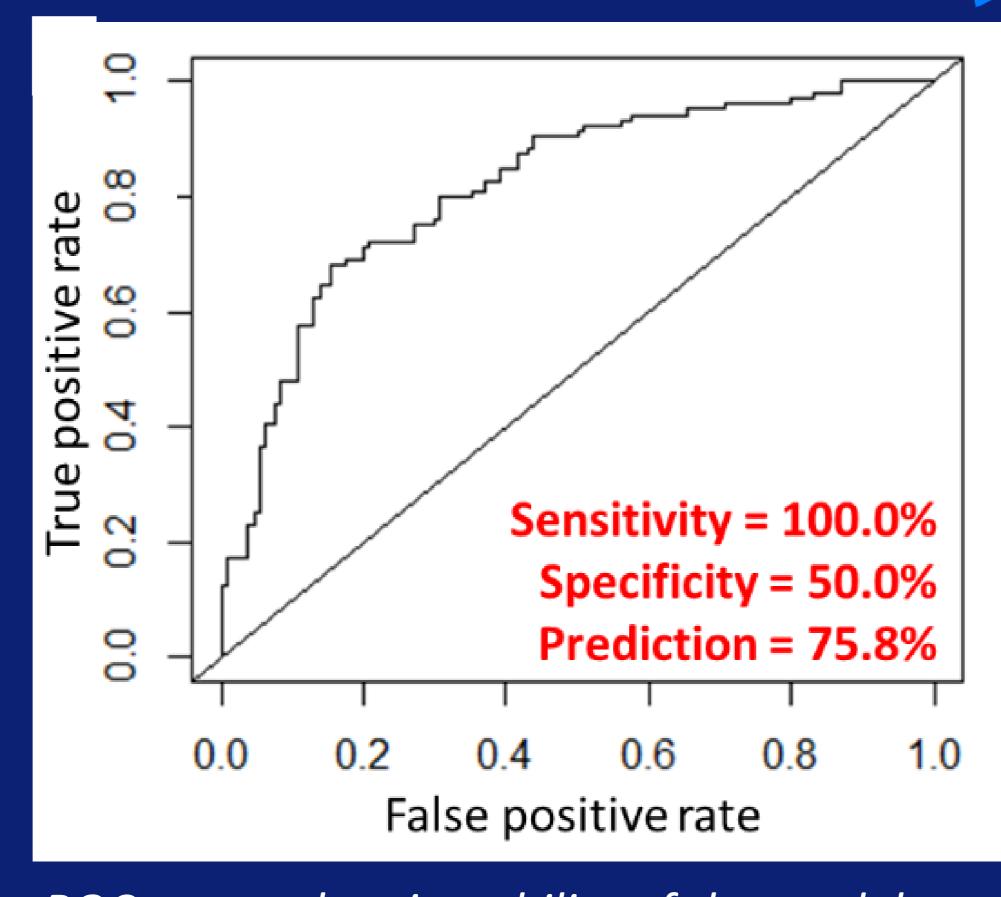
Is metabolic profile at age 3 months predictive for body composition at age 2 years?

Boys vs girls?

Breast vs formula?

Sophia PLUT

METHOD


318 healthy term-born infants Blood (3 months) & skinfolds (2 years)

Identification of 349 metabolites & lipids by LC-MC-method

Prediction for 'high' vs 'low' truncal / peripheral skinfold ratio (T:P-ratio) at age 2 years by Random forest machine learning

RESULTS

15 metabolites at age 3 months were modestly predictive for T:P-ratio at age 2 years

ROC- curve showing ability of the model to identify individuals with 'high' vs 'low' T:Pratio at age 2 years

Associations were independent of infant feeding

Fold change > 1: infants with 'high' T:P-ratio at 2 years had higher metabolite level at age 3 months compared to infants with 'low' T:P-ratio

	All		Boys		Girls	
Metabolite variables	Fold change	p-value	Fold change	p-value	Fold change	p-value
LysoPS(22:2)	1.48	5.99x10 ^{-06*+}	1.58	4.95x10 ⁻⁰⁵	1.37	0.021
Dimethylarginine	1.85	0.0001+	2.20	0.0001	1.50	0.074
LysoPE(20:1)	1.09	0.0008+	1.08	0.0053	1.09	0.059
LysoPG(16:0)	1.14	0.0022	1.11	0.0240	1.17	0.054
LysoPA(22:1)	1.41	0.0040	1.42	0.0122	1.39	0.101

Associations with T:P- ratio was 14/15 in boys vs 5/15 in girls

Predictive performance ♂: 32.2% & 우: 11.7%

Abbreviations: LysoPA=lysophosphosphatidic acid, LysoPE=lysophosphatidylethanolamine, LysoPG=lysophosphatidylglycerol, LysoPS= lysophosphatidylserine . * denotes passing FDR based on Bonferoni and + Benjamini-Hochberg.

CONCLUSIONS

Metabolic profile in the first months of life might contribute to adiposity programming, potentially due to low grade inflammation

These 5/15

metabolites are

associated with

inflammatory

processes

i.vanbeijsterveldt@erasmusmc.nl

Acknowledgements

All parents, children & research nurses, who are part of the Sophia Pluto study

Erasmus MC

