

The 59th Annual Meeting Online 22-26 September 2021

INTRODUCTION

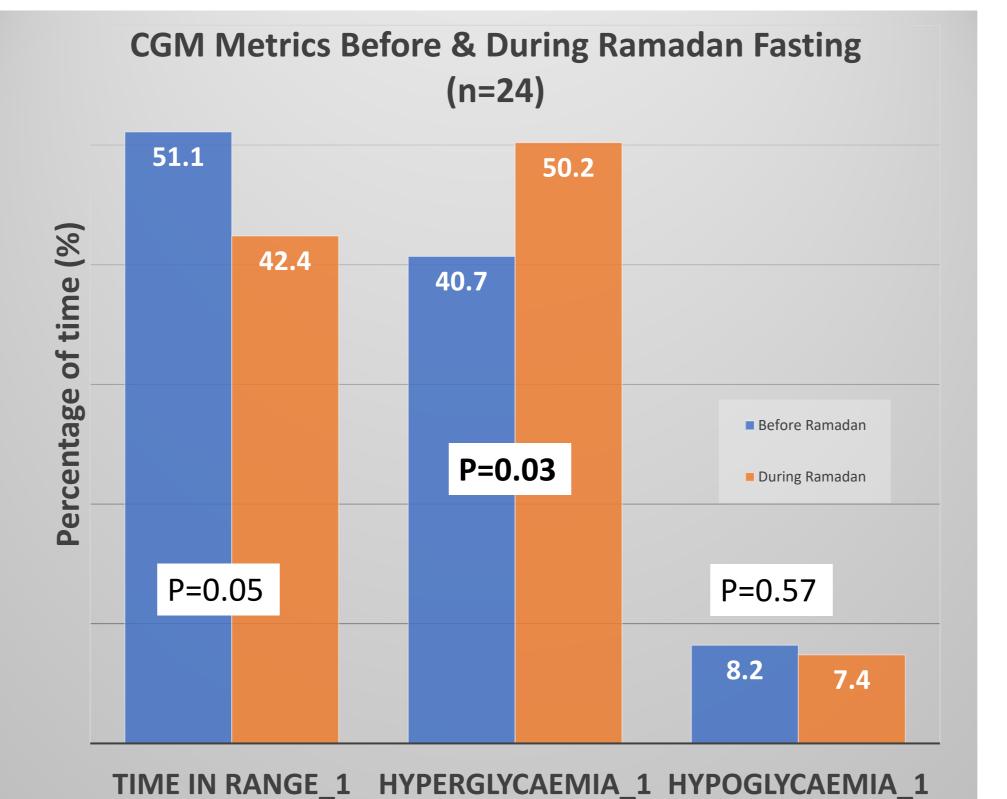
- Muslim T1DM children and adolescents in developing countries are often inclined to fast despite religious exemption, even during COVID-19 pandemic
- Ramadan fasting has been associated with increased metabolic risk of hypo or hyperglycaemia, diabetic ketoacidosis, dehydration and thrombosis

AIM

 To investigate the short-term glycaemic impact of Ramadan fasting in T1DM children and adolescents via retrospective CGM

METHOD

- Observational study
- Duration: February to May 2020 (including Ramadan Hijri 1441, 23/4/20- 24/5/20)
- Inclusion: T1DM aged 8-18 years old who intended to fast during Ramadan
- Exclusion: Hypoglycaemia unawareness, history of recurrent hypoglycaemia or DKA 3 months prior
- Ramadan-focused education & SMBG 3-4 times per day with standardised glucometers (Contour Plus One) and fully supplied strips
- iPro2 (Medtronic)→ Before and During Ramadan month
- In view of potential risk and background glycaemic control within cohort, 4 clinic visits were provided throughout study period
- Diabetes team consists of physician, dieticians and diabetic nurse educators


SHORT-TERM GLYCAEMIC CHANGES FROM CONTINUOUS GLUCOSE MONITORING AMONG CHILDREN AND ADOLESCENTS WITH TYPE 1 DIABETES MELLITUS DURING FASTING IN RAMADAN MONTH

SZE TEIK TEOH¹, SUHAIMI HUSSAIN² and JANET YEOW HUA HONG¹

- 1. PAEDIATRIC UNIT, HOSPITAL PUTRAJAYA, FEDERAL TERRITORY OF PUTRAJAYA, MALAYSIA
- 2. PAEDIATRIC UNIT, HOSPITAL UNIVERSITI SAINS MALAYSIA, KELANTAN, MALAYSIA

RESULTS

- Out of 32, 24 patients analysed (8 dropout)
- 4 defaulted visit; 4 incomplete data pairs
- Average fasting duration was 20-30 days
- None had required emergency visit
- CGM analysis indicates:
- Increase for time in mild hyperglycaemia (level 1), mean glucose and estimated A1c during Ramadan
- No difference for time in range (level 1), time in severe hyperglycaemia (level 2), time in mild hypoglycaemia (level 1), time in severe hypoglycaemia (level 2)
- Reduction for time in range (level 2) -not applicable in paediatric age
- During Ramadan, significant GV observed during non-fasting hours, compared to fasting hours, with higher MAGE and HBGI during non-fasting hours. No increased LBGI during fasting hours

DEMOGRAPH	Total (n=24)	
Age (years)*		13.6 (3.06)
Duration of diabetes (years)*		5.4 (3.42)
Baseline HbA1c (%)*		9.6 (1.85)
Insulin delivery#	MDI	22 (91.7)
	CSII	2 (8.3)
Previous experience#	Yes	23 (95.8)
	No	1 (4.2)
Insulin dose* (unit/kg/day)	Before Ramadan	1.2 (0.2)
	During Ramadan	1.0 (0.2)
Socio-economic status#	B40	11 (45.8)
	M40	10 (41.7)
	T20	3 (12.5)
_		

Footnotes: *Numerical, in means (SD); #Categorical, in number (%); B40, household income < RM4850 per month; M40, household income RM4851-RM10 970 per month; T20, Household income > RM10 971 per month

	SUMMARY TABLE	BEFORE RAMADAN (n=24)	DURING RAMADAN (n=24)	P-value
Sensor	Readings (each subject/week)	1739.8 (366.9)	1613.9 (416.1)	0.14 ^a
Accuracy	MARD (%)	14.3 (7.7)	15.0 (9.4)	0.61 ^a
	Calibrations (each subject/week)	23.7 (1.4)	21.9 (1.7)	0.29 ^a
CGM Metrics	Mean glucose (mmol/L)	9.7 (2.2)	10.6 (2.9)	0.04 ^a
	CV (%)	42.9 (8.1)	40.8 (9.1)	0.31 ^a
	Estimated A1c (%)	7.7 (1.4)	8.3 (1.8)	0.03 ^a
	Time in range_1 (%)	51.1 (14.6)	42.4 (20.9)	0.05
	Time in range_2 (%)	34.6 (16.0)	27.3 (17.4)	0.02 ^a
	Time in hyperglycaemia_1 (%)	40.7 (18.78)	50.2 (25.66)	0.03 ^a
	Time in hyperglycaemia_2 (%)	19.5 (13.96)	25.6 (18.55)	0.10 ^a
	Time in hypoglycaemia_1 (%)	8.2 (10.61)	7.4 (10.49)	0.57 ^a
	Time in hypoglycaemia_2 (%)	4.2 (7.11)	3.5 (5.33)	0.54 ^a

Footnotes:

Numerical data, in means (SD); MARD, mean absolute relative difference; CV, co-efficient of variance; Time in range_1, SG between 3.9-10 mmo/L; Time in range_2, SG between 3.9-7.8 mmol/L; Time in hyperglycaemia_1, SG >10 mmol/L; Time in hyperglycaemia_2, SG >13.9 mmol/L; Time in hypoglycaemia_1, SG <3.9 mmol/L; Time in hypoglycaemia_2, SG <3.0 mmol/L; ^a Paired sample t test

		Fasting hours (06:00- 1900)	Non-fasting hours (19:00-06:00)	P-value
Glycaemic Variability (GV)	MAGE	10.22 (2.83)	10.99 (3.10)	0.02 ^a
	LBGI	5.03 (5.83)	5.59 (4.63)	0.64ª
	HBGI	15.10 (7.94)	19.11 (8.99)	0.002a

Footnotes: Numerical data, in means (SD); MAGE, mean amplitude glycaemic excursion; HBGI, high blood glucose index; LBGI, low blood glucose index; ^a Paired sample t test

CONCLUSIONS

- . Despite cohort of suboptimal baseline HbA1c with lack of access to advanced diabetes technology, and low household income, safe fasting was observed
- 2. Fasting is not associated with short-term glycaemic deterioration, except for increased time in mild hyperglycaemia, without effect onto time in range, severe hyperglycaemia or hypoglycaemia
- Individualised insulin titration based on published Ramadan guidelines, focused education and regular SMBG help to ensure safe fasting in T1DM children

REFERENCES

- Guidelines P. Diabetes and Ramadan Diabetes and Ramadan International Diabetes Federation (IDF), collaboration with Diabetes and Ramadan (DAR) International Alliance.; 2021.
- Hassanein M, et al. Ramadan fasting in people with type 1 diabetes during COVID-19 pandemic: The DaR Global survey. Diabetes Res Clin Pract. 2021;172:108626. doi:10.1016/j.diabres.2020.108626
- Deeb A, et al. ISPAD Clinical Practice Consensus Guidelines: Fasting during Ramadan by young people with diabetes. Pediatr Diabetes. 2020;21(1):5-17. doi:10.1111/pedi.12920
- Danne T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40(12):1631-1640. doi:10.2337/dc17-1600
- Kaplan W, et al. Blood glucose fluctuation during ramadan fasting in adolescents with type 1 diabetes: Findings of continuous glucose monitoring. Diabetes Care. 2015;38(10):e162-e163. doi:10.2337/dc15-1108
- Kaplan W, et al. Comparison of continuous glucose monitoring in adolescents with type 1 diabetes: Ramadan versus non-Ramadan. Diabetes Res Clin Pract. 2017;134:178-182. doi:10.1016/j.diabres.2017.10.010

ACKNOWLEDGEMENTS

- 1.Director General, Ministry of Health, Malaysia
- 2.Deputy Director General (Research and Technical Support), Ministry of Health, Malaysia
- 3. Hospital Directors
- 4. Diabetes team members and patients

CONTACT INFORMATION

. Sze Teik, Teoh. Paediatric Unit, Hospital Putrajaya, Jalan P9, Presint 7, 62250, Federal Territory of Putrajaya, Malaysia. Email: hpj.paedsendo@gmail.com

