

BACKGROUND

- Congenital Hyperinsulism (CHI) is a common cause of recurrent and persistent hypoglycemia in the neonatal period. (1)
- Diazoxide is an FDA approved drug used in treating CHI. (2)
- It activates sulfonylurea receptor of ATPsensitive potassium (KATP) channel on β -cell of pancreas leading to suppression of insulin secretion. It is widely used in management of CHI. (3, 4)

AIM

• To report the clinical, laboratory, treatment and outcome profile of diazoxide responsive CHI from a tertiary pediatric endocrine unit

METHOD

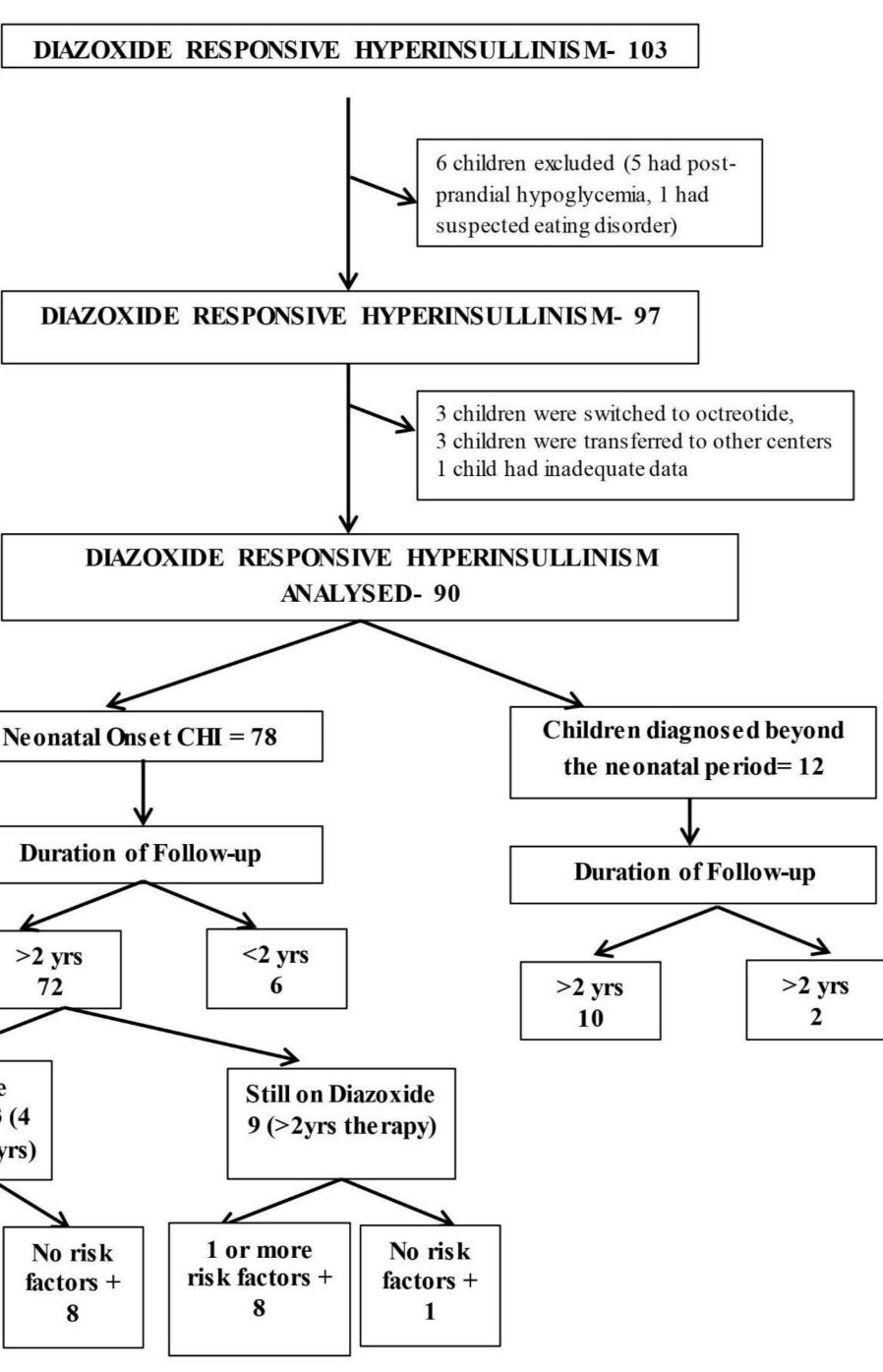
- A retrospective study at a tertiary pediatric endocrine unit (from January 2012 to Nov 2019).
- Inclusion criteria- children diagnosed with CHI during the episode of hypoglycemia, elevated c peptide level inappropriately suppressed ketones and free fatty acids who were responsive to diazoxide
- Children switched to octreotide or lost to followup or transferred to other centers were excluded.
- Out of 103 children who were diazoxide responsive 13 were excluded from the study and data of 90 children was included and analysed.
- Detailed history, clinical findings, biochemical parameters, 2 D-echocardiography, adverse events following diazoxide therapy, genetic analysis & long-term follow-up data were noted.
- All data were entered in MS excel 2016.
- Analysis was performed with SPSS v 21.
- P < 0.05 was considered significant.

Gene	Type of Mutation	Treatment (in yrs)	Follow-up status			
11p15 methylation defect	1	0.61	Off treatment			
HNF4A	heterozygous – 1 compound heterozygous- 1	4.5 years 4.3 years	Both on treatment			
HNF1A	1	5.6 years	On treatment			
INSR	1	1.4 years	Off treatment			
GLUD1	1	9.3	Off treatment			
ABCC8	Heterozygous missense-1 Homozygous- 3	1.03 yrs (1.9 yrs, 0.9 yrs, 0.3 yrs)	3 On & 1 off treatment			
Table 4. Positive Genetic mutation description of the study population						
CONCLUSIONS						

- onset.

DIAZOXIDE RESPONSIVE CONGENITAL HYPERINSULINISM

N. LOHIYA¹, K. CASSIDY¹, Z. YUNG¹, S WRIGHT¹, L GAIT¹, K. ERLANDSON-PARRY¹, M DIDI¹ and S SENNIAPPAN¹ 1. Department of Endocrinology, Alder Hey Children Hospital, Liverpool, United Kingdom


RESULTS

• Among 90 children (males= 69.4%) 72 were diagnosed in neonatal period.

 Only in 18.1% children diazoxide therapy was required for >2 yrs

On comparison of those required treatment of <2yrs & >2yrs it was noticed that c-peptide level were significantly high in children requiring longer duration therapy.

Among those requiring therapy for > 2yrs, 23.1% were genetically positive as compared to 5.1% among those needing treatment <2 years.

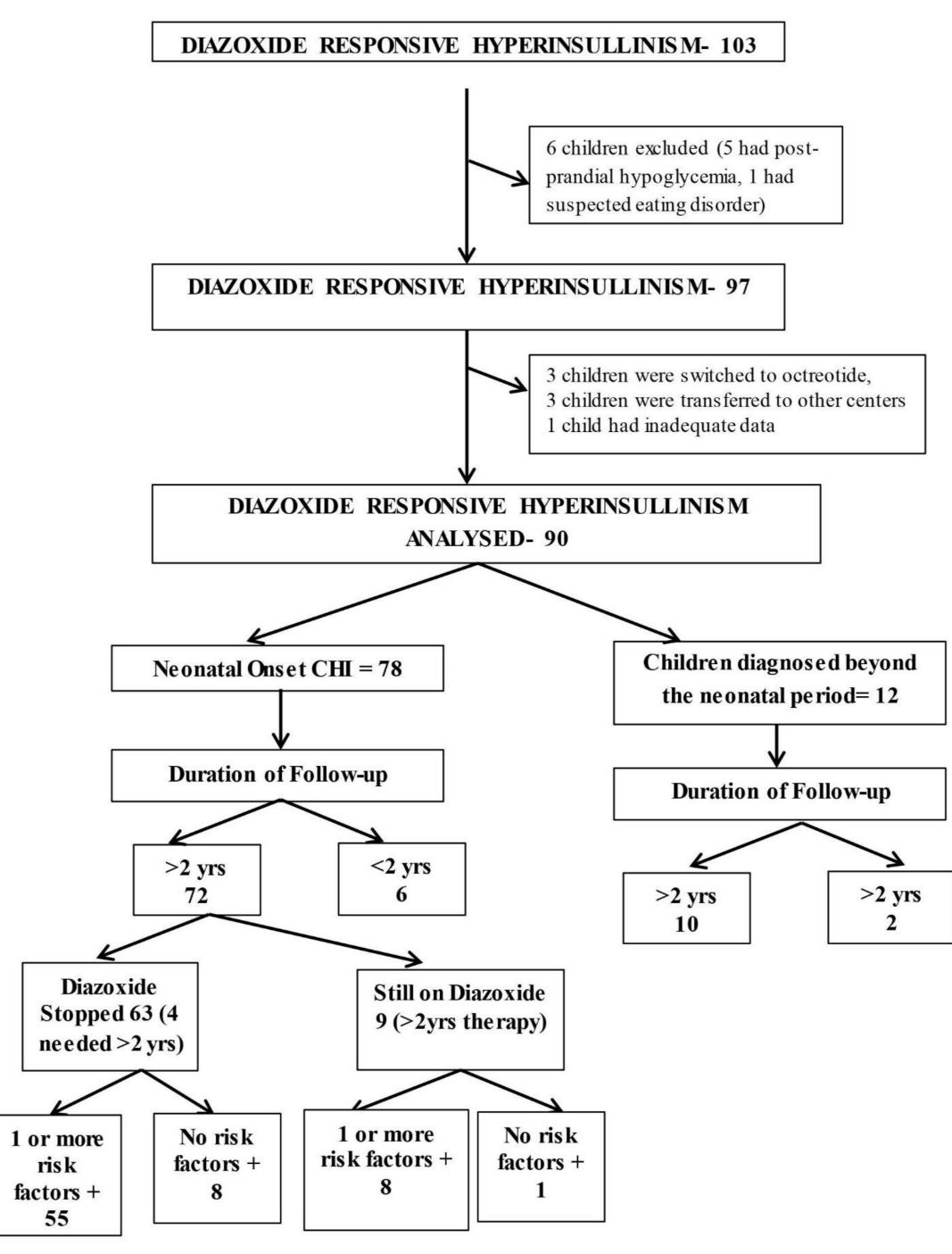


Fig 1. Description of study population of diazoxide responsive CHI

We have reported children with diazoxide responsive CHI where the median duration of therapy is shorter in neonatal onset CHI compared to those with late

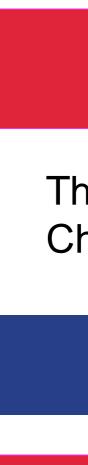
Also most of the neonatal onset CHI had risk factors present and diazoxide was eventually discontinued in majority of them.

• Genetics were negative in majority of the diazoxide responsive patients who had transient CHI.

	N (%)
T1DM in mother	2 (2.8%)
GDM	7 (9.7%)
Beta Blockers use (PIH)	3 (4.2%)
Twin Pregnancy	7 (9.7%)
IUGR/SGA	26 (36.1%)
LGA	12 (16.7%)
Perinatal Distress	10 (13.9%)
Preterm Birth	24 (33.3%)
Children requiring therapy <2 yrs	59 (81.9%)
Children requiring therapy > 2yrs	13 (18.1%)
Off Therapy	63 (87.5%)
Ketotic Hypoglycemia	7 (9.7%)

Table 1 Profile of diazoxide responsive neonatal CHI (categorical variable)

	< 2 years Therapy (N=59)		> 2 years Therapy (N=13)				
	Mean	SEM	Range	Mean	SEM	Range	Р
Age at Diagnosis (day of life)	0.76	0.19	0-7	4.1	2.1	0-25	0.1
Birth Weight (SDS)	-0.54	0.24	-3.50- 2.9	-0.06	0.72	-3.42- 3.2	0.47
Blood glucose (mmol/L)	1.9	0.07	0.8- 2.8	1.6	0.24	0.2- 2.5	0.24
Insulin (pmol/L)	118.9	21.7	18- 1100	308.5	132.8	24- 1357	0.59
C peptide (pmol/L)	607.9	59.3	169-2022	1224.5	285.7	292-3280	0.02
Peak GIR (mg/kg/min)	14.3	0.8	8-33	17	1.8	12- 25	0.21
Initial dose of diazoxide	3.5	0.2	1-10	3.3	0.2	2-5	0.75
Responsive Dose	3.95	0.24	1-10	4.5	0.6	2-10	0.38
Table 3. Comparison of <2 years and > 2 years group							


REFERENCES

Arya VB, Senniappan S, Guemes M, Hussain K. Neonatal hypoglycemia. The Indian Journal of Pediatrics. 2014 Jan 1;81(1):58-65.

2. National Library of Medicine. DaileyMed. Package insert: Proglycemdiazoxide suspension. October 2, 2015. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=b16c7832-2fd9-49af-b923-1dc0d91fd6e2. Accessed Dec. 4, 2020.

Senniappan S, Shanti B, James C, Hussain K. Hyperinsulinaemic hypoglycaemia: genetic mechanisms, diagnosis and management. Journal of inherited metabolic disease. 2012 Jul 1;35(4):589-6013.

Senniappan S, Arya VB, Hussain K. The molecular mechanisms, diagnosis and management of congenital hyperinsulinism. Indian journal of endocrinology and metabolism. 2013 Jan;17(1):19.

	Range	Mean	SE Mean
Age at diagnosis (Day of life)	0-25	1.36	0.425
BW SDS	-3.51- 3.21	-0.46	0.24
Blood Glucose (mmol/L)	0.2-2.8	1.88	0.06
Insulin (pmol/L)	18.5-1357	149.5	28.78
C-peptide (pmol/L)	169-3280	733.46	80.7
Peak GIR (mg/kg/min)	8-33	14.7	28.8
Diazoxide initiating dose (mg/kg/day)	1-10	3.46	0.18
Diazoxide at optimum response (mg/kg/day)	1-10	4.04	0.22
Chlorothiazide (mg/kg/day)	3-10	6.39	0.3
Duration of therapy (Yrs)	0.0082-7.8	1.48	0.22

pocter. ession

Table 2. Profile of diazoxide responsive neonatal CHI (continous variable)

ACKNOWLEDGEMENTS

The work was done during ESPE fellowship at Alder Hey Children's Hospital sponsored by Merck.

CONTACT INFORMATION

Dr Nikhil Lohiya- <u>drnnlohiya@gmail.com</u>

Dr Senthil Senniappan- <u>senthil.senniappan@alderhey.nhs.uk</u>

P2-233

29ESPE