

INTRODUCTION

Laron syndrome (LS) is defined as primary growth hormone resistance caused by genetic defects in growth hormone (GH) and insulin-like growth factor 1 (IGF-1) axis. Varying degrees of severe or moderate growth failure and additional phenotypic features may be seen in patients, depending on mutations.

AIM

We present the variable clinical spectrum in two sibling cases of Iraqi Arab origin with growth hormone receptor (GHR) mutation.

RESULTS

- Birth week and birth weight were normal in both cases
- There was a first degree cousin marriage between the parents
- Missense c.344A>C (p.Asn115Thr) variant was detected in exon 5 in both siblings.
- The clinical features and laboratory findings of the patients at diagnosis are presented in Table
- The clinical characteristics of the patients at the last evaluation are presented in Table 2.
- Dysmorphic findings of siblings are shown in figure 1.
- Growth curve for height with Laron syndrome in figure 2.

Two Sibling Cases with Growth Hormone Receptor Mutation: Variable Clinical Expressivity in Laron Syndrome

Behiye Sarıkaya Özdemir¹, Semra Çetinkaya¹, Naz Güleray Lafcı², Merve Şakar¹, Gülin Karacan Küçükali ¹, Selin Elmaoğulları¹, Şenay Savaş Erdeve¹

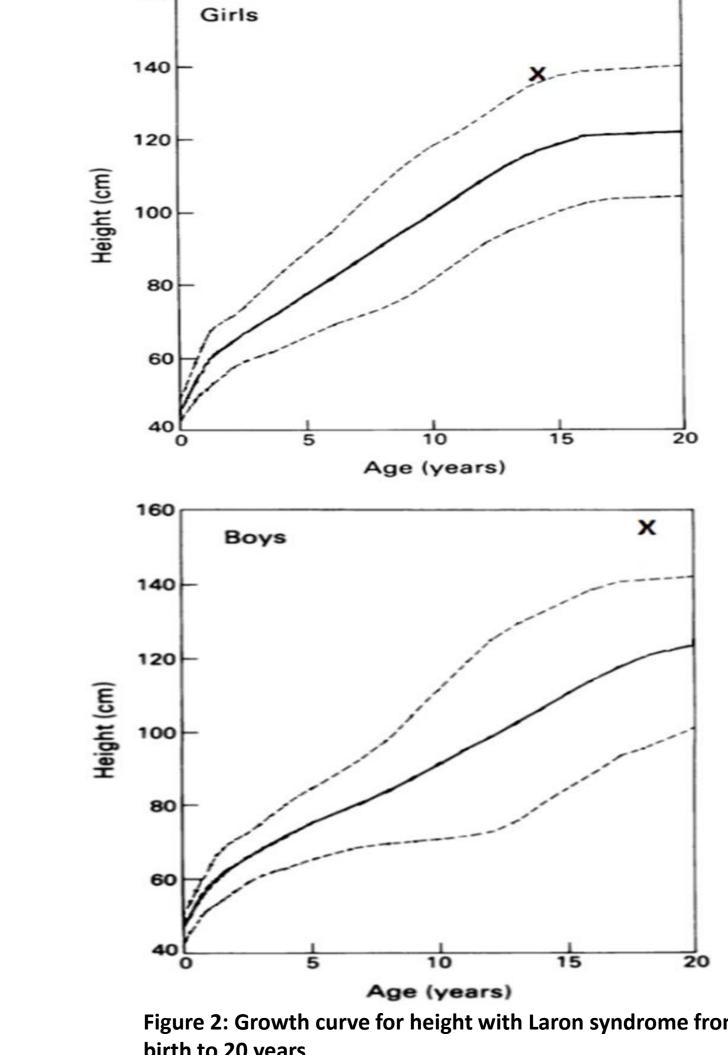
¹Pediatric Endocrinology, Dr. Sami Ulus Gynecology, Obstetrics, and Child Health and Diseases Training and Research Hospital, Saglik Bilimleri University, Ankara, Turkey

²Clinic of Medical Genetics, Pediatric Endocrinology, Dr. Sami Ulus Gynecology, Obstetrics, and Child Health and Diseases Training and Research Hospital, Saglik Bilimleri University, Ankara, Turkey

RESULTS

Table 1. Clinical and laboratory findings of the two siblings at diagnosis							
At diagnosis	Case 1,Female	Case 2,Male					
Chronological age(Year)	11,9	14,10					
Height(cm)/SDS	127,5 /-3,86	139/-4,27					
Weight(kg)/SDS	31,5/-1,89	35,9/-3,2					
BMI(kg/m²)/SDS	19,3/0,16	18,58/-0,97					
Puberty stage	2	2					
Bone age (Years)	12	13					
Basal GH (ng/mL)	1,28	26,6					
Peak GH (ng/mL)	27,8	8,96					
Basal IGF-1 (ng/mL)/SDS	82/ <-2	97,7/ <-2					
Basal IGFBP-3(µg/mL)/SDS	2,586/ <-2	2,06/ <-2					
Post generation test							
IGF-1(ng/mL)/SD	108/ <-2	213/ (-2/-1)					
IGFBP-3 μg/mL/SD	2,429/<-2	4,802/(-1/mean)					
Response to generation test(%)	31	118					

Table 2: Clinical findings of the two siblings at last evaluation								
Last Evaluation	Case 1,Female	Case 2,Male						
Chronological age (years)	14,3	17,10						
Target height (cm) /SDS	160 cm/ -0,53 SDS	173 cm/ -0,52 SDS						
Height (cm) /SDS	138,3/-3,92	156,3/-3,17						
Weight (kg) /SDS	50,3/-0,67	48,6/-2,98						
BMI (kg/m²) / SDS	26,3/1,75	19,89/-1,27						
Weight by height (%)	154	99						


CONCLUSIONS

In the literature, there are three reported cases harboring the same mutation as in our cases, all being of Arab origin, suggesting a probable "founder effect" for the identified mutation. These three previously reported patients all had severe LS phenotype and lower final height SDS values and lower IGF-1 levels than our cases (-4.5 SDS in a female case, and -6.8 and -6.9 SDS in two male cases)(Table 3). The milder phenotype in our patients despite the same genotype suggests, a variable GHR activity potentially due to other modifiers such as downstream variants in other genes in the GH/IGF1 pathway.

Table 3. Clinical data of 5 LS patients with the same GHR mutation

	Gender	Consaang uinity/ethnicity	Age at presentati on years	Height SDS	BMI SDS	GH basal μg/L	after	IGF-1 after stimulation ng/mL	IGF-1 SDS	IGFB-3, mg/L
1	F	+/Arabic- Syrian	3.1	-4.5	-1.2	3.3	75.0	-	-7.3	-
2	M	+/Saudi Arabian	1.25	-6.9	_	_	213	<3	_	< 0.5
3	M	+/Saudi Arabian	3.0	-6.8	-2.77	_	50	<3	_	0.6
4 Case 1	F	+/Arabic- Iraqi	11 .9	-3.86	0.16	1.28	27.8	108	< -2	2.42
5 Case 2	M	+/Arabic- Iraqi	14.10	-4.27	-0.97	26.6	8.96	213	< -2	2.06

REFERENCES

- 1. Shapiro L, Chatterjee S, Ramadan DG, Davies KM, Savage MO, Metherell LA, et al. Whole-exome sequencing gives additional benefits compared to candidate gene sequencing in the molecular diagnosis of children with growth hormone or IGF-1 insensitivity. Eur J Endocrinol. 2017;177:485-501.
- 2.Al-Ashwal AA, Al-Sagheir A, Ramzan K, Al-Owain M, Allam R, Qari A, et al. Clinical, Endocrine, and Molecular Genetic Analysis of a Large Cohort of Saudi Arabian Patients with Laron Syndrome. Horm Res Paediatr. 2017;88:119-126.

CONTACT INFORMATION

e-mail: behsaroz@hotmail.com Phone:05364180283

