Lack of Cinacalcet Response in Neonatal Severe Hyperparathyroidism due to Homozygous

CASR Mutation

Ammar Haider¹, Sommayya Aftab^{2,3}, Shumaila Chaudhary¹, Mazhar Qadir¹, Muhammad Anjum⁴, Tahir Shaeen², Farah Haroon¹, Huma Arshad Cheema⁴, Mehmood Shaukat⁵, Khawaja Ahmad Irfan Waheed¹.

¹ Department of Neonatology, The Children's Hospital & The Institute of Child Health, Lahore.

²Department of Paediatric Endocrinology and Diabetes, The Children's Hospital & The Institute of Child Health, Lahore.

- ³ Department of Paediatric Endocrinology and Diabetes, Hameed Latif Hospital, Lahore
- ⁴ Department of Paediatric Gastroenterology and hepatology, The Children's Hospital & The Institute of Child Health, Lahore.
- ⁵ Department of Paediatric Surgery, Hameed Latif Hospital, Lahore

Table-2 showing characteristics of different variants of CASR mutation

c.295G>C

Case 1

* Case 3 had a sad demise before surgery due to hospital acquired infection

Case 2

17.2

yes

p.(Asp99His p.(Arg690His)

c.2069G>A

INTRODUCTION

P2-64

- ☐ Neonatal severe hyperparathyroidism (NSHPT) is a rare disorder caused by inactivating calcium-sensing receptor (CASR) mutation.
- ☐ The calcium sensing receptor(CASR) is the key sensor for extracellular calcium. Inactivating mutations of CASR elevate the set point of receptor activation by extracellular calcium.

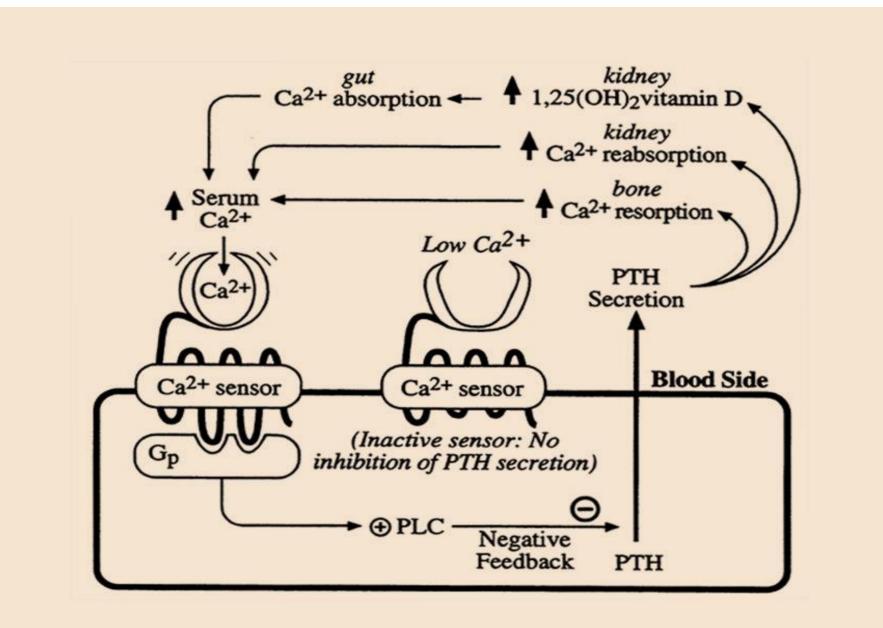


Figure-1 Showing calcium homeostasis by Calcium sensing receptor (CASR)

AIM

☐ To determine the clinical spectrum of NSHPT due to *CASR* mutation.

METHOD

☐ Retrospective review of NSHPT cases due to CASR mutation at a Tertiary Care Hospital in Lahore in last one year.

RESULTS

Presentation

- ☐ Total 3 cases (2 females) from three different families of NSHPT due to CASR mutation were identified.
- □ All born consanguineous to with history parents, unexplained sibling death in case 1 and still birth in case 2.
- □ 2 cases were born IUGR and presented in neonatal age group with complains of lethargy, reluctance to feed and polyuria.
- ☐ 1 case presented at 4 months of age with nephrocalcinosis

Characteristics

Birth weight (Kg)

Hyperhydration &

Cinacalcet max dose

Parathyroidectomy

Post cinacalcet Calcium

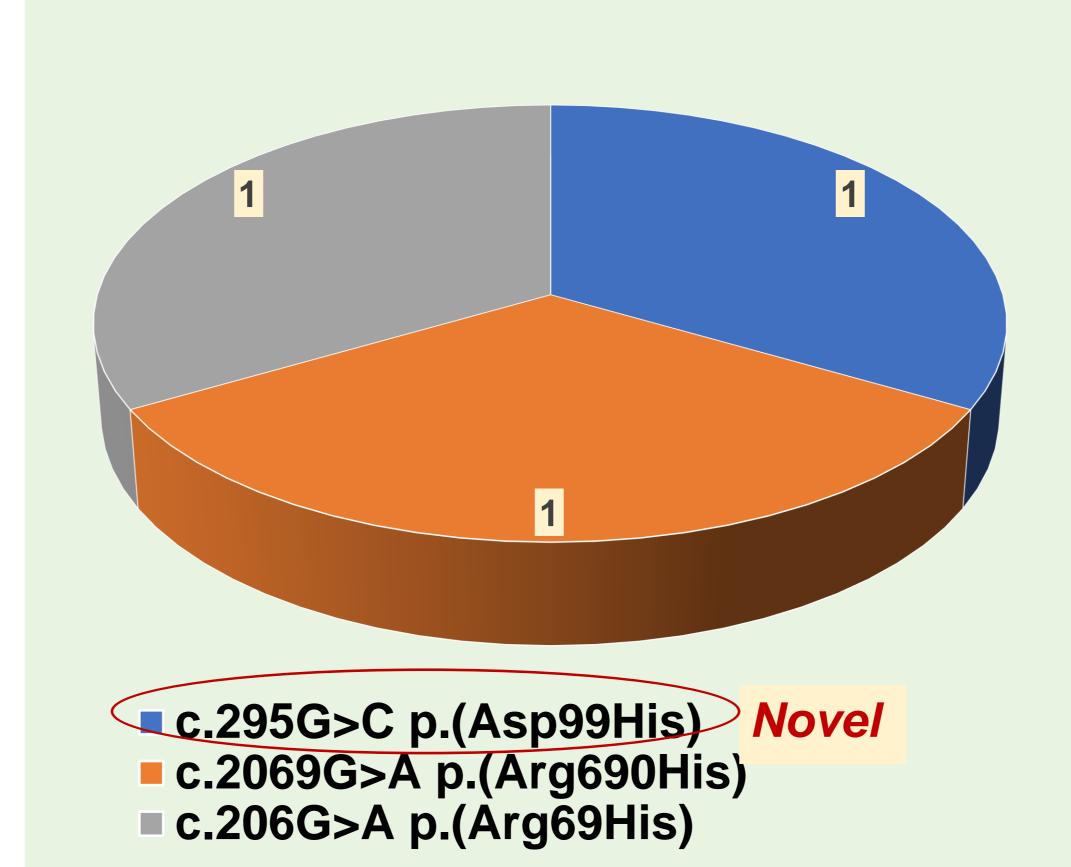
Pamidronate

(mg/kg/day)

(mg/dl)

(mg/dl)

(mg/dl)


Age of Manifestation (days)

Calcium at presentation

Phosphate at presentation

CASR variant

Figure-2. Showing Underlying CASR mutations variants

Case 3

16.6

No*

c.206G>A

p.(Arg69His)

Table-1. Bone profile at presentation

Bone Profile	Mean	Range
Calcium (mg/dl)	21.5	20.4 – 23.1
Magnesium (mg/dl)	2.36	2.3 - 2.4
Phosphate (mg/dl)	1.7	1.2 – 2.2
Alk. Phosphatase (IU/I)	456	426 - 504
PTH (pg/ml)	900	642 – 1077
25-OH vitamin D (ng/ml)	18.5	16.7 -20.9
Urine calcium to creatinine ratio	0.4	0.4-0.5

hypercalcaemia, hypophosphatemia, raised PTH Table-3. Post Parathyroidectomy outcomes

Post - parathyroidectomy	Case 1	Case 2
Age of parathyroidectomy (months)	2	6
Post-op Calcium (mg/dl)	9.1	9.2
Post-op Phosphate (mg/dl)	3.4	3.0
Post-op PTH (pg/ml)	3.5	<4.0

CONCLUSION

- We have identified 3 cases of NSHPT due to CASR mutation
- □ None of our cases responded to cinacalcet and two of the ended cases parathyroidectomy.
- ☐ Efficacy of cinacalcet in **NSHPT** due to CASR mutation needs further randomized controlled trials
- ☐ There is need for studies with larger data look for phenotype genotype and correlation.

REFERENCES

- 1. Mayr B, Schnabel D, Dörr H, Schöfl C. GENETICS IN ENDOCRINOLOGY: Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: current treatment concepts. European Journal of Endocrinology. 2016;174(5):R189-R208.
- 2. Marx S, Sinaii N. Neonatal Severe Hyperparathyroidism: Novel Insights From Calcium, PTH, and the CASR Gene. The Journal of Clinical Endocrinology & Metabolism. 2019;105(4):1061-1078.
- 3. Ahmad N. Neonatal severe hyperparathyroidism secondary to a novel homozygous CASR gene mutation. Clinical Cases in Mineral and Bone Metabolism. 2017;14(3):354.
- 4. Atay Z, Bereket A, Haliloglu B, Abali S, Ozdogan T, Altuncu E et al. Novel homozygous inactivating mutation of the calcium-sensing receptor gene (CASR) in neonatal severe hyperparathyroidism—lack of effect of cinacalcet. Bone. 2014;64:102-107.

CONTACT INFORMATION

dr.ammarhaider@yahoo.com

Ammar Haider Clinical Fellow Neonatology

The Children's Hospital & The Institute of Child Health,

Lahore

