hrp0089fc2.1 | Bone, Growth Plate & Mineral Metabolism 1 | ESPE2018

Burosumab, a Fully Human anti-FGF23 Monoclonal Antibody, for X-linked Hypophosphatemia (XLH): Sustained Improvement in two Phase 2 Trials in Affected Children 1–12 years old

Linglart Agnes , van't Hoff William , Whyte Michael P. , Imel Erik , Portale Anthony A. , Boot Annemieke , Hogler Wolfgang , Padidela Raja , Mao Meng , Skrinar Alison , Martin Javier San , Carpenter Thomas O.

In XLH, excess fibroblast growth factor 23 (FGF23) causes hypophosphatemia and consequent rickets, skeletal deformities, and growth impairment. The efficacy and safety of burosumab, a fully human monoclonal antibody against FGF23, was evaluated in two Phase 2 trials in children with XLH. In CL201, 52 children with XLH (5–12 years old, Tanner ≤2) were randomized 1:1 to receive subcutaneous burosumab every 2 (Q2W) or 4 (Q4W) weeks, with doses titrated up to 2 mg/kg to...

hrp0092fc2.1 | Bone, Growth Plate and Mineral Metabolism Session 1 | ESPE2019

Continued Improvement in Clinical Outcomes with Burosumab, a Fully Human Anti-FGF23 Monoclonal Antibody: Results from a 3-Year, Phase 2, Clinical Trial in Children with X-Linked Hypophosphatemia (XLH)

Linglart Agnès , Carpenter Thomas O. , Högler Wolfgang , Imel Erik A. , Portale Anthony A. , Boot Annemieke , Padidela Raja , Van't Hoff William , Mao Meng , Skrinar Alison , Scott Roberts Mary , San Martin Javier , Whyte Michael P.

In children with XLH, excess FGF23 causes hypophosphatemia with consequent rickets, skeletal deformities, and impaired growth and mobility. We previously reported that burosumab improved phosphate homeostasis and rickets in children with XLH. Here, we report final data from this Phase 2 Study CL201 (NCT02163577).Fifty-two children with XLH (5-12 years old, Tanner ≤ 2) were randomized 1:1 to receive subcutaneous burosumab every 2 (Q2W) or 4 (Q4W) we...

hrp0092fc2.2 | Bone, Growth Plate and Mineral Metabolism Session 1 | ESPE2019

Benefits of Long-Term Burosumab Persist in 11 Girls with X-Linked Hypophosphatemia (XLH) Who Transitioned into Adolescence During the Phase 2 CL201 Trial

Boot Annemieke , Carpenter Thomas O. , Högler Wolfgang , Imel Erik A. , Portale Anthony A. , Linglart Agnès , Padidela Raja , Van't Hoff William , Mao Meng , Skrinar Alison , Scott Roberts Mary , San Martin Javier , Whyte Michael P.

In children with XLH, excess FGF23 causes hypophosphatemia with consequent rickets, skeletal deformities, and impaired growth and mobility. We reported that burosumab improved phosphate homeostasis and rickets in children with XLH. Here, we present data on 11/52 subjects (all girls) who developed fused growth plates during the phase 2 study CL201 (NCT02163577).In CL201, 52 subjects (Baseline: 5-12 years-old, Tanner ≤ 2) were randomized 1:1 to recei...

hrp0092rfc2.1 | Bone, Growth Plate and Mineral Metabolism Session 1 | ESPE2019

Burosumab Resulted in Better Clinical Outcomes Than Continuation with Conventional Therapy in Both Younger (1-4 Years-Old) and Older (5-12 Years-Old) Children with X-Linked Hypophosphatemia

Högler Wolfgang , Imel Erik A. , Whyte Michael P. , Munns Craig , Portale Anthony A. , Ward Leanne , Nilsson Ola , Simmons Jill H. , Padidela Raja , Namba Noriyuki , Cheong Hae Il , Mao Meng , Skrinar Alison , San Martin Javier , Glorieux Francis

In children with X-linked hypophosphatemia (XLH), excess circulating fibroblast growth factor 23 (FGF23) causes hypophosphatemia with consequent rickets, skeletal deformities, and impairments in growth and mobility. Compared to continuation with conventional therapy (oral phosphate and active vitamin D [Pi/D]), switching to treatment with burosumab, a fully human monoclonal antibody against FGF23, showed significantly greater improvement in phosphate homeostasis, rickets sever...

hrp0089fc10.1 | Late Breaking | ESPE2018

Burosumab Improved Rickets, Phosphate Metabolism, and Clinical Outcomes Compared to Conventional Therapy in Children with X-Linked Hypophosphatemia (XLH) – A Randomized Controlled Phase 3 Study

Nilsson Ola , Whyte Michael P. , Imel Erik A. , Munns Craig , Portale Anthony A. , Ward Leanne , Simmons Jill H. , Padidela Raja , Namba Noriyuki , Cheong Hae Il , Mao Meng , Skrinar Alison , Chen Chao-Yin , Martin Javier San , Glorieux Francis

In children with XLH, high circulating levels of FGF23 cause hypophosphatemia with consequent rickets, skeletal deformities, and growth impairment. Conventional therapy consists of multiple daily doses of oral phosphate and active vitamin D (Pi/D). Burosumab is a fully human monoclonal antibody against FGF23 indicated for the treatment of XLH. In the active-control study CL301 (NCT02915705), 61 children with XLH (1–12 years old) were randomized (1:1) to receive subcutaneo...

hrp0094p1-161 | Growth B | ESPE2021

Continued Safety and Efficacy of Weekly Lonapegsomatropin (TransCon hGH) for up to Two Years in Children with Growth Hormone Deficiency (GHD)

Aghajanova Elena M. , Casella Samuel J. , Nadgir Ulhas , Hofman Paul , Saenger Paul , Song Wenjie , Mao Meng , Chessler Steven , Komirenko Allison S. , Beckert Michael , Shu Aimee D. , Thornton Paul S. , Maniatis Aristides K. ,

Lonapegsomatropin (TransCon hGH) is an investigational once-weekly prodrug of somatropin for the treatment of GHD. Previous trials in treatment-naïve (52-week heiGHt Trial) and treatment-experienced children (26-week fliGHt Trial) have reported the efficacy and safety of lonapegsomatropin. Subjects were eligible to enter the open-label extension enliGHten Trial, which continues to evaluate weekly lonapegsomatropin in pediatric GHD. In heiGHt, treatment-naïve subjects...